
Testing Metrics for Password Creation Policies
by Attacking Large Sets of Revealed Passwords

Matt Weir, Sudhir Aggarwal, Michael Collins, Henry Stern
Florida State University, Redjack LLC, and Cisco IronPort Systems

weir@cs.fsu.edu, sudhir@cs.fsu.edu, michael.collins@redjack.com, hestern@cisco.com

ABSTRACT
In this paper we attempt to determine the effectiveness of using
entropy, as defined in NIST SP800-63, as a measurement of the
security provided by various password creation policies. This is
accomplished by modeling the success rate of current password
cracking techniques against real user passwords. These data sets
were collected from several different websites, the largest one
containing over 32 million passwords. This focus on actual attack
methodologies and real user passwords quite possibly makes this
one of the largest studies on password security to date. In addition
we examine what these results mean for standard password
creation policies, such as minimum password length, and
character set requirements.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection –
Authentication

General Terms
Security, Human Factors, Measurement

Keywords
Password Cracking, Cybercrime, Password Policies

1. Introduction
Secure password generation is complicated by the tradeoff
between developing passwords which are both challenging to
crack and usable. Truly random passwords are difficult for users
to memorize, and user-chosen passwords may be highly
predictable. Password policies attempt to mediate between these
two goals by forcing users to incorporate additional complexity
into a password, such as by mandating the user include an odd
character or use passwords of some minimal length. However,
these policy mechanisms are hampered by an ill-defined
understanding of their actual effectiveness against real attack
techniques, and by circumvention strategies employed by the
users. For example, a policy mandating that a user include at least
three digits in a password will often result in the user simply
appending “123” on the end of an insecure password. A
sufficiently sophisticated password cracker will be aware of these
strategies and incorporate mechanisms for breaking them into
their tools.

It is unlikely any other document has been as influential in
shaping password creation and use policies as the NIST Electronic
Authentication Guideline SP-800-63 [1]. The findings and
recommendations published in it have proven the basis for many
government and private industry password policies [2, 3]. Central
to this document is the notion of measuring password entropy.
The idea of information entropy was first formalized by Claude
Shannon [4] as an approach to measure the amount of information
that is unknown due to random variables. In a way, it attempts to
determine the randomness of a variable based upon knowledge
contained in the rest of the message. Most often this randomness
or information is expressed using the following equation:

۶ሺܠሻ ൌ െ ∑ ሻܑܠሺ۾

ୀ ܗۺ ሻ 1ܑܠሺ۾

For example, a fair coin flip would land as heads 50% of the time.
The resulting entropy of modeling a single fair coin flips would
then be െ ∑ .ሺ۾ ሻ

ୀ ܗۺ .ሺ۾ ሻ which is equal to 1 bit of
entropy. Each successive flip of the coin would add an additional
bit of entropy as the result is a summation across all of the
variables xi. The context for Shannon’s research was to determine
the amount of lossless compression that can be performed to store
or transmit a message. In the previous case, the smallest message
on average that could be sent describing the results of a run of
completely fair coin flips would require at least one bit of data per
coin toss.

What the NIST standard did was attempt to use the concept of
Shannon’s entropy for estimating the strength of password
creation policies against online password cracking attacks. As
we’ll show in the following sections, this unfortunately is not a
valid approach. While the Shannon entropy value would be useful
to determine on average the minimum amount of space required to
store or transmit a human generated password, it has no relation to
the guessing entropy of a password. To put it another way, even
with an accurate Shannon entropy value, it would not tell the
defender anything about how vulnerable a system would be to an
online password cracking attack.

If the Shannon entropy value is not useful when determining the
strength of a password creation policy, then the question remains,
what is the benefit of different password creation rules? Is an
eight character password on average stronger than a seven
character password, and if so, by how much? Even in the NIST
SP800-63 publication when attempting to gauge how much
entropy is added to a system due to various creation policies, the
authors themselves state, “Unfortunately, we do not have much
data on the passwords users choose under particular rules.” A
related paper authored by a Microsoft researcher [5], which
attempted to gauge the security provided by strong passwords,
raised much the same point: “As far as we are aware, there is no
data available on strength related attacks on passwords of web-
sites that maintain lockout policies.”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CCS’10, October 4–8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0244-9/10/10...$10.00.

162

Our approach then in this paper is twofold. First, we demonstrate
that the use of Shannon’s entropy as defined in NIST SP800-63 is
not an effective metric for password security. Second we attempt
to gauge the security provided by conventional password creation
rules. We accomplish both of these tasks by performing standard
password cracking attacks against multiple sets of real life
passwords. These passwords, which will be described in more
detail in Section 4, and Appendix 1 and 2, were all obtained from
publicly disclosed hacking attacks. This is where an attacker
collected the passwords, either through a phishing attack, or
compromising a website, and for whatever reason posted the
password lists online. These lists in some cases can be quite large,
as in the RockYou set [6] which contained over 32 million
passwords. Admittedly these datasets can be problematic, since
none of them represent corporate logins. A counter-example can
easily be made that people on average choose stronger passwords
for more sensitive sites. That being said, these datasets still
represent a significant number of user password creation strategies
and can be applied to evaluate the expected success rate of
different types of attacks. We hope this focus on real passwords
and real attack methodologies can provide a better understanding
of the effectiveness of different password creation policies.

The remainder of this paper is structured as follows: Section 2
details some of the previous work done in this area. Section 3
covers the NIST SP800-63 model of password entropy. Section 4
illustrates why that the NIST notion of password entropy does not
provide an accurate view of password security. Section 4 further
goes on to demonstrate the effectiveness of password cracking
strategies against traditional password creation rules. Finally
Section 5 discusses password creation policies that might be more
applicable when defending against online attacks.

2. Previous Work
There have been several previous attempts to measure password
security by analyzing real life passwords. One of the first papers
to take this approach was written in 1978 by R. Morris and K.
Thompson [19]. They found that in a group of around 3,000 users,
1/3rd of the passwords were vulnerable to a dictionary attack
containing 250,000 words. When combined with a limited brute
force attack, they estimated over 86% of the passwords could be
cracked. Since then several other studies have found similar
results. In [20], A. Narayanan, and V. Shmatikov ran experiments
against 142 real user passwords and were able to break 67.6% of
them using a Markov based brute force attack. In [21], Yan,
Blackwell, and Anderson found when testing a group of 300
student passwords, 32% of the control group was cracked via a
limited dictionary based attack. In [22], Wu collected over 25
thousand Kerberos v4 tickets and attempted to crack the
corresponding user passwords. In that experiment, only 8.1% of
the passwords were cracked over a two week period due to the
computational complexity of making a password guess. Perhaps
the largest previous study on password security was done by
Stone-Gross et al when his team temporarily took over the torpig
botnet [23]. During the ten day period they had control of the
botnet, their group collected over 297 thousand unique
username/password pairs from 52 thousand infected computers.
To test the strength of the plaintext passwords collected, they
hashed 173 thousand unique passwords with the MD5 hashing
algorithm and then proceeded to use the popular password
cracking tool John the Ripper to try and crack the hashes using an
offline attack. During the course of a 75 minute cracking session,
the team managed to break over 40% of the passwords. What’s

more, they found that 28% of users re-used the same password
across multiple sites. This closely matches an earlier study by
Sophos [24], where 33% of users polled admitted to using the
same password for all of their internet logins. If this holds true,
that means passwords gathered from low value targets, such as
social networking websites, might successfully be used by an
attacker to target higher value targets such as webmail and bank
accounts. It also means that the results of studying these “low
value” passwords may provide us insight into the effectiveness of
password creation policies for higher value sites.

That being said, none of the above studies focused specifically on
the security that password creation policies actually provide, such
as the effect password length has on password strength. There has
been some research into how effective the notion of Shannon
entropy is for measuring password strength, (and by extension the
recommendations put forward by NIST 800-63). The most notable
papers covering the subject have been [7, 8], but those studies
focused exclusively on the theoretical underpinnings of trying to
convert the Shannon entropy to the Guessing entropy of a system,
and did not verify their findings using real user passwords. In the
pessimistically titled paper, “Password Exhaustion: Predicting the
End of Password Usefulness” [25], Clair et al, attempted to
evaluate the search spaces produced by different password
creation policies along with their resistance to attack. They found
that certain password policies might actually weaken systems
against brute force attacks due to the reduction in key space. They
then collected 3,500 student passwords and attempted to crack
them using a 20 node cluster of computers. This resulted in their
team breaking 34% of the passwords in five days, with a vast
majority of these passwords, (almost 90% of the cracked
passwords), falling to brute force attacks. Unfortunately, their
tests did not attempt to measure security provided, (or reduced),
by the application of different password creation policies beyond
their resistance to brute force attacks. Therefore, we feel that the
results and strategies detailed in this paper are fairly novel as we
attempt to gauge the security of password creation policies by
examining real user passwords and their resistance to dictionary
based attacks.

One other paper that bears mentioning is a survey of password
creation and storage policies among several popular websites by J.
Bonneau and S. Preibusch [26]. There are too many interesting
findings from that paper to list here, and it is highly recommended
reading to help put the results detailed later in this paper into
context with how password policies are currently implemented.
For example, a vast majority of the websites Bonneau and
Preibusch examined, including sites such as eBay, Amazon.com,
and Wordpress, did not support rate limiting the number of
guesses allowed to an attacker.

3. Password Entropy per NIST SP800-63
As mentioned previously, the password recommendations
provided in the NIST document are based on the idea of
information entropy. Building on the notion of entropy detailed in
Equation #1, it can further be expanded by noting that the entropy
of several random variables can be modeled as:

۶ሺܠ, ሻܡ ۶ሺܠሻ ۶ሺܡሻ 2

In the NIST document, they attempt to define these random
variables by specifying how they are created through the use of
common password creation policies. These random variables can
be viewed as representing an unknown value that an attacker

163

would have to guess when attempting to crack a password. Each
variable is assigned an entropy score, and the sum of all the
entropy scores is added up to create a final entropy total for the
entire system using Equation 2. The entropy score for each
variable is assigned using the following criteria which is quoted
directly from the original NIST paper:

1. The entropy of the first character is taken to be 4 bits;
2. The entropy of the next 7 characters are 2 bits per

character; this is roughly consistent with Shannon’s
estimate that “when statistical effects extending over not
more than 8 letters are considered the entropy is roughly
2.3 bits per character;”

3. For the 9th through the 20th character the entropy is taken
to be 1.5 bits per character;

4. For characters 21 and above the entropy is taken to be 1
bit per character;

5. A “bonus” of 6 bits of entropy is assigned for a
composition rule that requires both upper case and non-
alphabetic characters. This forces the use of these
characters, but in many cases these characters will occur
only at the beginning or the end of the password, and it
reduces the total search space somewhat, so the benefit is
probably modest and nearly independent of the length of
the password;

6. A bonus of up to 6 bits of entropy is added for an
extensive dictionary check. If the Attacker knows the
dictionary, he can avoid testing those passwords, and will
in any event, be able to guess much of the dictionary,
which will, however, be the most likely selected
passwords in the absence of a dictionary rule. The
assumption is that most of the guessing entropy benefits
for a dictionary test accrue to relatively short passwords,
because any long password that can be remembered must
necessarily be a “pass-phrase” composed of dictionary
words, so the bonus declines to zero at 20 characters.

There has been some confusion based on the examples given in
the NIST document whether rule #5 requires numbers and special
characters to both be present or if the presence of either one would
allow assigning of the “bonus” six bits of entropy. If such a
distinction is important in any of the tests in this paper, the
method to calculate rule #5 will be explicitly stated.

As an illustration of using the above model , consider a password
creation policy requiring nine character passwords, and for at least
one uppercase letter, lowercase letter, digit, and special character
to be present. The resulting NIST entropy score would then be
calculated as 25.5 bits of entropy as seen in Fig 3.1.

Figure 3.1: Example Calculation of NIST Entropy

The next step is to translate the resulting entropy score into a
measure of security provided by the password creation policy. If

the entropy calculation is equivalent to a uniformly distributed
randomly generated key of length H(x), this becomes possible due
to the following equation:

Chance of success = Number of Allowed Guesses / 2H(x) 3

For example, an attacker will have a 50% chance of cracking a
random key if they can search half of the key-space. If the
security threshold of the risk allowed is known, (aka it is
acceptable for the key to be successfully guessed with a certain
probability), Equation 3 can easily be rewritten to then provide the
maximum number of guesses that an attacker should be allowed
while maintaining a set level of risk. The NIST SP800-63
document does this by designating two different levels of
acceptable risk. For a password policy to meet a Level 1
certification, the chance of an attacker succeeding should be 1 in
1024. For a Level 2 certification, the attacker’s success rate
should be limited to 1 in 16,384. The resulting number of guesses
allowed an attacker would then be:

Level 1: Number of Allowed Guesses = 2H(x) x 2-10
 4

Level 2: Number of Allowed Guesses = 2H(x) x 2-14 4

Given these equations, and the ability to calculate H(x), the idea is
to allow a defender to tailor their password creation policy to the
level of security that is required and the expected number of
guesses that an attacker would be allowed, (either via password
lockout policy, or rate limiting). The potential problems with this
approach are 1) Does the calculation for H(x) correspond to user
behavior, and 2) Is the Shannon Entropy value equivalent to a
uniformly distributed random key for security purposes? Question
#2 was addressed in [7, 8], and it has been shown that the
Shannon Entropy value is not equivalent to guessing entropy
value. The reason behind this is that the distribution of values is
not uniform across the key-space. A quick counter-example to
demonstrate this: For Equation 4 to hold true when applied to
passwords, the proportion of passwords cracked would have to
increase linearly with the number of guesses made. The examples
shown later on in Section 4 clearly show this is not the case.

In [7], an alternate metric for measuring password strength was
proposed, but as the authors admit, it is only applicable for
situations such as one-time keys, and not for human generated
passwords intended for day-to-day use. Therefore because the
Shannon Entropy does not correlate to the Guessing Entropy, this
paper will focus on answering question #1, and more specifically,
how much security is provided by existing password creation
rules, such as specifying a minimum password length, or requiring
a digit. In addition, we will also refer back to the SP800-63 notion
of entropy to further provide empirical evidence of its
shortcomings to back up the proofs already laid out in [7, 8].

4. Effectiveness of Entropy against
Password Cracking Attacks

In this section, we evaluate the entropy scoring provided by NIST
SP800-63 document against common password cracking
techniques and real life datasets. The intent of this analysis is to
provide additional insights into the effectiveness of password
creation policies, and to evaluate the value of the SP800-63 notion
of entropy in regards to actual password cracking attacks.

4.1 Experiment Methodology
To evaluate the security provided by password creation policies
we need to be able to model the threats against them. For this

164

paper we are primarily concerned about online password cracking
attacks, where the security of the system is still operational. In an
online attack, the attacker selects a set of targets and applies a
number of guesses in an attempt to crack them. Each guess is
applied sequentially against each target, and a target is removed
from evaluation when a guess matches the target’s password. In
the context of this analysis, a “guess” is therefore a guess against
each target in the target set. That is, if we state that we are
applying “500 guesses”, we mean 500 guesses per target.

This model allows us to score password attacks as a function of
success per guesses invested. We expect that most online systems
follow a per-target lockout policy, meaning that if more than some
threshold of attacks are made against a target in a limited period,
that target and only that target are temporarily locked out. The
cost of making guesses against two targets is therefore no more
than the cost of making a guess against a single target.

We can slightly modify our approach if the defender uses a global
lockout policy (i.e., if the defender locks out all targets if attacks
exceed a certain threshold). If all of the targets are of equal worth,
an attacker will spend their time making the most probable
guesses against each target. Therefore the attack strategies remain
the same. The one difference is our simulation of per-target
lockout policy presents a slightly optimistic view for the defender
if a global lockout policy is in place since in a real life attack, if an
attacker manages to crack a password they will stop making
guesses against it and use their time to focus on the remaining
passwords instead. That caution also applies to the rest of the
results in this paper, as it is always possible for an attacker to
come up with attack methods that performs better than the ones
we modeled.

The majority of tests in this paper use passwords collected from
the RockYou password list [6]. The RockYou set was originally
obtained by an attacker who utilized a SQL injection attack
against the rockyou.com website, and then later posted the
passwords online. RockYou provided applications for numerous
social networking sites such as Facebook, MySpace, and
Friendster, and thus included the associated login details created
by users for those sites. The actual list itself contained over 32
million passwords. Due to the list’s size, we used the GNU shuf
tool to randomize it and then divided the list into 32 sub-lists
containing one million passwords each. This allows us to run
experiments against a smaller set of passwords, while leaving
other sub-lists untainted for use in future tests. Using standard
machine learning techniques, currently we have assigned the first
five sub-lists, RockYou_test1 through RockYou_test5, as part of a
test set, while the last five sub-lists, Rockyou-train28 through
RockYou_train32 for use in training new attacks. Therefore we
are not training and testing against the same passwords.

Because the RockYou list represents passwords collected from a
diverse set of web sites, there is no single password creation
policy that affects all of the words in the list. We can therefore
examine the resulting distribution of these passwords as evaluated
by the SP800-63 entropy score. To model this, the maximum
entropy value for a creation policy which a password could be
generated under was evaluated using the rules NIST put forward,
with Rule 5 being interpreted as requiring numbers, special
characters and uppercase. In addition, it is assumed that no
blacklists of forbidden passwords were used. The resulting graph
measuring the maximum entropy score for passwords from the
RockYou_test1-3 sets can be seen in Fig 4.1.1.

Figure 4.1.1: Maximum SP800-63 Password Creation Policies

of the RockYou Data-Set

The NIST entropy values displayed ranged from 4, (the minimum
possible under the SP800-63 rules), to 32. The highest entropy
value detected was 278, (which may have represented a password
created by a spammer or a junk value that was somehow imported
into the database). The above results also give a general
breakdown of the password length distribution, since very few
passwords managed to meet Rule #5. This is also why there were
very few passwords which had an entropy value of 22 or 24. Since
there was no uniform password creation policy in effect, the
results in Fig 4.1.1 are likely to be a reasonable estimate of
“normal” user password generation.

4.2 Minimum Password Length, Digits, and
Why Password Entropy is not Valid

The next step is to attempt to evaluate the impact of individual
password creation policies on the success of password cracking
attacks. The first creation policy we will examine is minimum
password length. Since we did not have examples of users
creating passwords under different length password creation
policies, we attempted to model these policies by further dividing
the test lists based on the minimum length passwords found in
them. Therefore a “7+ sub-list” would contain all the passwords
from the parent list that were seven or more characters long.

For the first test, we wanted to show a longer password cracking
session that would probably only be performed in an offline
attack. While the SP800-63 document is more concerned with
online attacks, we felt that the results were useful for comparison,
and for modeling other threats. To simulate an offline attack, the
popular cracking tool John the Ripper [9] was used, along with its
“Single mode” rule-set, (a collection of rules which create a much
longer password cracking session than their default rule-set).
Since this is a dictionary based attack, the input dictionary used
was Dic-0294, which is a commonly used password cracking
dictionary [10]. This dictionary contained 869,228 unique words,
and the number of guesses was significantly higher due to every
mangling rule being applied to each applicable word. Since it can
be assumed that the attacker has knowledge of the password
creation policy, we did not permit John the Ripper to make
guesses shorter than what was allowed for the list it was targeting.
The results of running these cracking sessions against the
RockYou_test1 list divided in subsets by minimum password
length can be seen in Fig 4.2.1. The percentage cracked refers to
the number of passwords cracked in each individual sub-list, and
not of the total set.

165

Figure 4.2.1: Results of Minimum Password Length on

Longer Password Cracking Sessions

Fig 4.2.1 shows that the effectiveness of each attack was
influenced by the minimum password length; however before we
examine the impact of minimum password length we must
consider several other possible causes that may have influenced
this decrease in password cracking effectiveness. One possible
issue is that the division of the lists based on minimum password
length was done artificially, since the RockYou site did not
enforce a uniform password creation policy. This might lead to an
unequal distribution of the security minded users between the
different sub-lists based on password size. For example, people
who created longer passwords when they didn’t need to, (based on
policy), might inherently choose a stronger password than users
who create the simplest password allowed. Since none of the test
sets we have access to enforced a password policy requiring users
to create passwords longer than six characters long, verifying if
this occurs is problematic. Therefore the best we can do is
evaluate the composition of passwords in the different sub-lists to
see if there are any noticeable differences in password creation
strategies between the different sub-lists beyond minimum
password length The results of this can be seen in Table 4.2.1.

Table 4.2.1 Password Information from the RockYou1 List

Character Set 7+ Chars 8+ Chars 9+ Chars 10+ Chars

Contains Digits 57.5% 59.5% 60.2% 60.0%

Contains Special
Characters

4.4% 5.1% 6.6% 8.0%

Contains
Uppercase

6.5% 6.7% 6.9% 7.1%

Contains Only
Lowercase
Letters, Digits

89.2% 88.4% 86.7% 85.1%

As expected, as shorter passwords were excluded, the average
complexity of the remaining sets increased. Of note is that as the
length of the passwords increased, their composition also becomes
more complex. From 7+ character passwords to 10+ character
passwords, the probability of a special character nearly doubles,
and the probability of uppercase characters increases by 10%.
These results imply that users picking longer passwords were also
either forced by policy or preference to add additional security
features. To further confirm this, the above lists were once again
divided to only include passwords containing at least one digit.
Likewise, the password cracking attacks were modified so they
only produced guesses that contained digits as well. This test has
an additional bonus of allowing us to evaluate the effectiveness of
requiring a digit in a password creation policy since we can
compare it to the previous test in Fig 4.2.1. The results of re-

running the password cracking attacks when digits are required
can be seen in Fig. 4.2.2.

Figure 4.2.2: Results of Minimum Password Length and
Requiring Digits on Longer Password Cracking Sessions

The test shows, that even when all passwords sets were required
to contain digits, there still was a noticeable difference in the
effectiveness of the attacks against the different test sets divided
by minimum password length. That being said, the divergence
between the test sets was less than if no digits were required; The
attack against the 7+ character set performed worse when digits
were required, and the attack against the 10+ character set
surprisingly performed slightly better when digits were required.
Note: it would probably be the wrong conclusion to assume that
requiring digits would make 10 character long passwords weaker.
What more likely happened was that this additional rule excluded
“junk” passwords in the list that did not correspond to an actual
user generated password, (for example some very long URLs
were present in the RockYou list). In addition several passwords
may have been created in a way that made them strong but did not
include digits, such as certain pass-phrases. By excluding digits,
some of these strong passwords may have been excluded as well.
The biggest difference though, from a defender’s perspective, is
that the requirement of a digit to be present significantly
decreased the effectiveness of the password cracking attack in the
first hundred million guesses.

Looking at how users incorporated digits into their passwords,
Table 4.2.2 shows the most popular digits used in the
RockYou_Training32 list.

Table 4.2.2: Top Ten Digits Found in the RockYou32 List

Rank Digit Percentage Rank Digit Percentage
#1 1 10.98% #6 123456 1.74%
#2 2 2.79% #7 12 1.49%
#3 123 2.29% #8 7 1.20%
#4 4 2.10% #9 13 1.07%
#5 3 2.02% #10 5 1.04%

This means that the top 10 digits counted for roughly 26% of the
total digits used. If we further mandate that a password must
include an alpha character as well, (a-zA-Z), the results in Table
4.2.2 remain mostly the same, with the main changes being that
the number ‘123456’ drops out of the top 10, and that the number
‘1’ by itself becomes more frequent with it appearing 15.44% of
the time. Likewise, the coverage of the top 10 digits increases to
36.25% of the total count.

Of course, what is also important is how those digits are actually
used in the password itself. For example the digit could be
appended at the end of the password, ‘secret123’, before the

166

password, ‘123secret’, or used in the middle of the password,
‘s3cr3t’. To better understand how people incorporate digits into
their passwords, Table 4.2.3 shows where the digits appeared in
seven character or longer passwords taken from the
RockYou_Train32 password list.

Table 4.2.3: How Digits are used in 7+ Character Passwords

Location Example Percentage
All
Digits

1234567 20.51%

After password123 64.28%
Before 123password 5.95%
Other passw0rd, pass123word, p1a2ssword, … 9.24%

It shouldn’t come as a surprise that most people simply add digits
to the end of a base word when creating a password. If we filter
the training list to only include passwords that also contained one
non-digit, the number of users who appended a digit to the end of
their password jumped to 77.46%. When running additional tests,
we found that an attacker could crack 11.06% of 7+ character
passwords which included at least one digit and one non-digit, just
by appending the number ‘1’ to the end of their password guesses.
In an attempt to gain a better understanding of how people used
digits that fell into the ‘other’ category, we performed a manual
analysis of a number of the passwords in the training set. We
found a vast majority of them used digits as letter or word
replacements. Word replacements such as replacing ‘for’ with ‘4’,
and ‘to/too/two’ with ‘2’ seemed particularly popular. Several
other strategies, such as using keyboard combinations, for
example ‘1qaz2wsx’, and ASCII art, ‘alice<3bob’, were also
noticed. There were also several passwords where a digit was
followed by a special character, such as ‘password1!’. While most
replacements, (except for the most commonly used ones such as
‘passw0rd’), are unlikely to be targeted in an online attack, an
attacker can certainly make use of this knowledge when
conducting an offline dictionary attack.

The next step is to evaluate what effect increasing the minimum
password length has on the effectiveness of an online password
cracking attack. To accomplish this, we must first determine a
relevant method to compare the success of different password
cracking attacks to each other. This is not a trivial problem. One
approach would be to compare the final number of passwords
cracked. A problem with this approach is: how long should the
cracking session be limited to? As an example of that, Fig 4.2.3
shows the same cracking sessions detailed in Fig. 4.2.1, but this
time limited to 50 thousand guesses.

Figure 4.2.3: Results of Minimum Password Length on

Shorter Password Cracking Sessions, Un-optimized Attack

At first glance, the results depicted in Fig 4.2.3 are decidedly
mixed with the minimum length only making a noticeable

difference in the effort required to crack 10+ character long
passwords. This is deceiving though, since the attack was not
intended/optimized for that short of a password cracking session.
As evidence of that, the input dictionary itself, dic-0294,
contained over 800 thousand words. This shows the importance of
measuring attacks that are tailored to the number of guesses
allowed. It is interesting though that even in this un-optimized
attack, each of the cracking sessions nearly cracked 1% of the
total passwords. We’ll see in the next test though that, 1% cracked
over 50,000 guesses is actually a poor success rate and we can do
much better using an optimized attack.

Another method to measure the relative effectiveness of a
password cracking session would be to determine how many
guesses were required to crack a certain percentage of passwords.
This approach can also be problematic, as it is highly dependent
on the percentage set. This can be seen in the previous figures
4.2.1 and 4.2.2, as a password cracking session will start out fast,
but quickly slow down as it takes more and more guesses to crack
each successive password.

To that end, since the SP800-63 document is primarily concerned
with defending against online password cracking attacks of a
limited number of guesses, it is useful to see the success rate of a
password cracking attack specifically tailored for shorter attack
runs. To set the next test up, we combined the training password
lists RockYou_train28 through RockYou_train32 to create a
training list of five million user passwords. This entire training list
was then sorted by the number of occurrences of each password,
(so the new list’s first password was ‘123456’), with all duplicate
guesses then being removed. This resulted in an input dictionary
where the most probable guesses are tried first. Using this targeted
input dictionary, we once again ran attacks against the
RockYou_test1 list. The results of these attacks when limited to
50k guesses using this targeted dictionary can be seen in Fig 4.2.4.
The reason a limit of 50k guesses was selected was that it seemed
a reasonable number to model an online attack against a system
that did not possess a lockout policy. Therefore if an attacker
could make a guess against each account every 10 seconds, this
would represent a cracking session of around six days.

Figure 4.2.4: Results of Minimum Password Length on
Shorter Password Cracking Sessions, Optimized Attack

What’s striking about the above graph is given just fifty thousand
guesses; over 25% of the 7+ character long passwords were
cracked. Even the 10+ character password suffered a crack rate of
over 14%. Regardless, the session depicted in Fig. 4.2.4 represents
a much longer cracking session than what the NIST 800-63 model
would recommend. For a Level 1 certified system with a

167

minimum password length of 10 characters, the maximum number
of guesses recommended to allow an attacker and still maintain an
acceptable failure rate is 2048 guesses. To better compare the
results to the NIST model, Fig 4.2.5 shows the same cracking
session, but this time limited to 2,000 guesses.

Figure 4.2.5: Results of Minimum Password Length on a Very

Short Password Cracking Session

This raises the question, how does the above cracking sessions
compare to the acceptable NIST failure rates given for level 1 and
2 certified systems? The answer, based on the above tests can be
seen in Table 4.2.4. As the results show, if a blacklist of common
passwords is not part of the password creation policy, the NIST
model quickly breaks down. For comparison, a policy that meets a
Level 1 system should only allow an attacker to guess a password
within the allowed number of guesses with a probability of 1 in
1024, or approximately a 0.097% chance. Likewise, a Level 2
certified system should only allow an attacker to be successful
with a probability of 1 in 16,384, or approximately a 0.0061%
chance. This is drastically different from our findings. What’s
worse, the attacker’s success rate actually increases as the number
of guesses allowed grows due to the higher minimum password
length, (though it does drop a bit when 10+ characters are
required). This implies that the current NIST measurements
overestimate the security provided by increasing the minimum
password length.

Table 4.2.4: Targeted Cracking Attack vs. the NIST Entropy

Value 7+ Chars 8+ Chars 9+ Chars 10+ Chars

NIST Entropy 16 18 19.5 21

Level 1 # of
Guesses

64 256 724 2048

% Cracked Using
Guesses Allowed
by Level 1

3.21% 6.04% 7.19% 7.12%

Acceptable Level1
Failure Rate

0.097% 0.097% 0.097% 0.097%

Level 2 # of
Guesses

4 16 45 128

% Cracked Using
Guesses Allowed
by Level 2

0.98% 2.19% 2.92% 2.63%

Acceptable Level2
Failure Rate

0.0061% 0.0061% 0.0061% 0.0061%

What this shows is that a blacklisting approach must be used for
any sort of security against online password cracking attacks,

considering that nearly 1% of 7+ character long passwords were
cracked with just four guesses. In all fairness, the NIST 800-63
document does state that a blacklisting approach was required for
a minimum entropy estimate. That slightly contradicts their
original entropy calculation though, where they assign an optional
6 bits of guessing entropy if a blacklist is employed. As we’ll see
later, even with a blacklisting approach, the NIST model of
entropy simply does not hold. In fact, no amount of adding or
modifying values when calculating the NIST Entropy can allow it
to be effectively applied to model the success rate of a password
cracking session against human generated passwords. To illustrate
this, Fig 4.2.6 shows the previous test in Fig 4.2.4, but this time
also depicting the expected cracking success rate, (using Equation
#5), per the NIST entropy model for policies requiring at least
seven character long passwords. Equation #5 simply is a rewriting
of Equation #3 in a way that can be easily graphed, and takes into
account that a seven character minimum length password creation
policy would have a NIST entropy score of 16.

Chance_of_success(y) = Number_of_guesses(x)/216 5

Fig 4.2.6 shows conclusively that the NIST notion of entropy does
not hold when modeling a password cracking session. For
example, the expected success rate given to Equation #5 means
100% of the passwords should be cracked given just 65,536
guesses. This is plainly not the case for any sort of real life attack.
What’s dangerous about the NIST entropy measurement is that it
overestimates the security of certain passwords that may be
cracked quickly by the attacker, leaving the defender with a false
sense of security, while drastically underestimating the security of
many passwords that for all intensive purposes are resistant to an
online attack. This in turn can lead to overly burdensome
password creation policies that disallow many passwords that in
practice would be secure against a determined attacker. In short,
the entropy value doesn’t tell the defender any useful information
about how secure their password creation policy is. While you can
change some values in the NIST calculation around, for example
saying that each additional character gives 1 bit of entropy vs. 2,
there is simply no way to transform a Shannon entropy value to
take advantage of Equation #4 and provide the expected success
rate of a password cracking attack against human generated
passwords.

Figure 4.2.6: Comparing the NIST Estimated Cracking Speed

vs. a Real Life Attack.

168

4.3 The Effectiveness of Using Blacklists of
Banned Passwords

The next question is how effective are different sized blacklists of
prohibited passwords. This was simulated by creating blacklists
based on the training list input dictionary from the previous test.
For example, a blacklist containing 500 banned passwords would
be formed from the 500 most frequently used passwords in the
training set. The results of re-running the attacks depicted in Fig.
4.2.4 against the RockYou_test1 7+ character long list, and using
various length blacklists, can be seen in Fig 4.3.1. For this
cracking session, we also allowed the attacker to have knowledge
of the blacklist so they will not waste their time making guesses
included in it. In addition, a limit of 50k guesses was once again
used to simulate an online cracking session if there was no
lockout policy.

Figure 4.3.1: Results of Using Blacklists When Attacking 7+

Character Long Passwords of the RockYou1 Test List

The most restrictive password creation policy in this test, where
passwords must be seven characters long and a blacklist of 50,000
words is used, yields a NIST calculated entropy value of 22. For a
Level 1 certified system, that means an attacker would be able to
make 4096 guesses, and for a Level 2 system the attacker would
be able to make 256 guesses. To better illustrate this, Fig. 4.3.2
shows the above password cracking session limited to 4,000
guesses.

Figure 4.3.2: Results of Using Blacklists When Attacking 7+

Character Long Passwords – Shorter Cracking Session

As the results in Fig 4.3.2 show, given a blacklist of 50k banned
words, and the 4096 guesses allowed by a level 1 certified system,
an attacker would still be able to crack 0.848% of the passwords,
which is still much higher than the 0.097% failure rate that was

predicted by the NIST model. For a level 2 certified system, an
attacker would be able to make 256 guesses, and in the above test
would crack 0.058% of the passwords. This is also significantly
higher than the NIST predicted 0.0061% failure rate. On the
positive side, while the results show further flaws in NIST
approach of calculating password entropy, these tests also
demonstrate that a significant improvement in the security of a
system may be obtained with even a moderately sized blacklist.

4.4 The Effectiveness of Requiring Uppercase
Characters

The next password creation policy we are going cover is case
mangling. Fig. 4.4.1 shows a cracking session against a subset of
the RockYou_test1 list of all the passwords that contained at least
one uppercase character, with the attacker using the RockYou
training input dictionary. The attacker once again has knowledge
of this password creation policy, and makes use of this when
generating their guesses.

Figure 4.4.1: Attack when Uppercase is required vs.

RockYou_test1

What immediately sticks out is that the password cracking
sessions start out much like the other attacks, but quickly hit a
plateau where they become significantly less effective.
Unfortunately this means that there still are a sizable number of
users who pick weak passwords and would be compromised in an
online cracking attack. On the plus side, this seems to imply that
even a moderately sized blacklist would provide significant
protection. Looking into the possible causes for this plateau, Table
4.4.1 shows the top ten case mangling rules for seven character
long alpha strings that were extracted from passwords with at least
one uppercase character. These alpha strings were extracted from
the RockYou_training28-32 sets and are independent of the rest of
the password (aka Table 4.4.1 only displays the letters, not the
digits or special characters that may have also been present in the
password). As Table 4.4.1 shows, an attacker could target around
89% of the seven character long alpha strings by either trying all
uppercase letters or just capitalizing the first character. This is not
inconsequential since in an online attack that would double the
number of guesses an attacker would have to make, but it is
hardly ideal. This also means that if an attacker has no additional
knowledge of the target, they most likely would never try any of
the other mangling rules in an online attack. That information still
doesn’t fully explain the results in Fig 4.4.1 though. As a side
note, the reason a string of all lowercase characters appears in the
above table is because some of the passwords had an uppercase
character separated by another value, such as “P#assword”.

169

 Table 4.4.1: Top Ten Case Mangling Rules for 7 characters

String: U=Upper, L=Lower Probability

UUUUUUU 53.56%

ULLLLLL 35.69%

ULLLULL 1.05%

LLLLLLL 1.03%

ULLLLLU 0.90%

ULLULLL 0.85%

ULULULU 0.68%

LLLLLLU 0.62%

UULLLLL 0.61%

UUULLLL 0.59%

To see if people who used uppercase characters created stronger
passwords in other ways vs. people who didn’t use uppercase
characters, the RockYou_training28-32 passwords were divided
by if they contained capital letters or not. The results of a few
simple metrics comparing the two lists can be seen in Table 4.4.2.

Table 4.4.2: Comparison of Lowercase vs. Uppercase

Metric
No Uppercase
Characters

Only Passwords that
Contained an Uppercase

Average Length 7.86 characters 8.28 characters
% that Contained
a Digit

53.93 55.74

% that Contained
a Special Char

3.15 7.87

This shows there is a small but noticeable increase in the use of
other mangling rules when a password is capitalized. That doesn’t
mean that everyone who used uppercase letters picked a strong
password. For example in the RockYou training set input
dictionary, the top five passwords that contained uppercase
characters were, “PASSWORD”, “ILOVEYOU”, “PRINCESS”,
“ABC123”, and “Princess”. This simply implies that the plateau
may in part be due to a larger proportion of users applying other
low probability mangling rules or base words.

4.5 The Effect of Requiring Special Characters
Now we move on to password creation policies that require
special characters, (aka not uppercase, lowercase or digits). The
results of running cracking sessions against the RockYou_test1
set, where only passwords containing a special character were
counted, is shown in Figure 4.5.1.

Figure 4.5.1: Attack when a Special Character is Required

Just like with case mangling, the attack starts out fast, but also
quickly plateaus. It should be noted that when special characters
were required, even in the initial first thousand guesses the attack
was much less successful then with the previous password
creation rules, such as requiring a digit or capitalized character.
Beyond the previously mentioned reasons for why these
passwords may be more resilient to attacks, (such as the users who
chose special characters creating stronger passwords in general),
the variation at which people choose special characters almost
certainly has something to do with their strength as well.

Table 4.5.1 shows the top 10 single letter, (aka not part of a
keyboard combo such as “!@#$%”), special characters used. This
data was collected from the RockYou_training28-32 lists.

Table 4.5.1: Top Ten One Letter Special Characters

Special Character Probability

. 17.81%

_ 14.72%

! 11.34%

- 10.25%

<space> 8.72%

@ 7.19%

* 6.54%

3.92%

/ 3.01%

& 1.84%

This is in stark contrast with digits, where for example 35% of the
time if a single digit was selected, that digit was the number ‘1’.
The next step is to see how special characters were used in the
password itself. Table 4.5.2 shows the top 10 structures of seven
character passwords from the RockYou_Train32 password list
that included at least one special character.

Table 4.5.2: Top Ten Structures for Special Characters

String: A=Alpha, D=Digit, S=Special Probability

AAAAAAS 28.50%

AAASAAA 7.87%

AAAASDD 6.32%

AAAAASD 6.18%

AASAAAA 3.43%

AAAASAA 2.76%

AAAAASA 2.64%

SAAAAAS 2.50%

ASAAAAA 2.38%

AAAAASS 2.17%

As expected, the most common structure simply had a special
character appended to the end of it. What’s interesting is that it
was much more frequent for a special character to be followed by
a digit than the other way around. This may be an indirect result
of password change policies, where people became used to
incrementing their base password by one each time they are
forced to select a new password. Looking at the individual

170

passwords which contained a special character in the middle of
them, underscores, dashes, and periods were very popular to break
up two words. For example: “ash_lee”. Letter replacements, such
as replacing an ‘a’ with an ‘@’, were much less common.

4.6 Comparing the Attacks against Other
Password Lists

Now a legitimate concern with the previous tests is that while the
training passwords and the test passwords were different, they
both came from same website. It can be argued that this represents
an unfair advantage for the attacker, and would not translate to a
real world password cracking session. To that end, using the same
dictionary formed from the RockYou training set, password
cracking sessions were run against several other disclosed
password lists using a maximum of 50k guesses. For more detail
about these lists please see Appendix 1 and 2. As in the previous
tests, these lists were divided by minimum password length. The
results of these attacks can be seen in Fig. 4.6.1.

Figure 4.6.1: 50k Guesses against Various Password Lists

As can be seen, the cracking sessions against the RockYou_test1
dataset actually performed worse than most of the other password
lists. Much of this is probably due to user training, and the relative
importance of the passwords to the users. For example, the
Neopets list for the most part represents young children. On the
other hand, the PhpBB list was a development and distributions
site for the PhpBB bulletin board so most of its users were
webmasters and/or programmers.

Another point of interest is the effectiveness of the RockYou
training set dictionary compared with other available input
dictionaries. To illustrate this, several cracking sessions were run
against the FaithWriters password list. Since the FaithWriters and
the Singles.org password lists were both composed of people
almost exclusively of the Christian faith, another targeted input
dictionary was created from the Singles.org list. This dictionary
was generated in the same way as the dictionary from the
RockYou training list. Since Singles.org represented a much
smaller password list, it only contained 12,234 unique words.
Likewise the default dictionary provided with John the Ripper,
passwords.lst was also used. Due to password.lst’s very small
size, (3,116 words), the default John the Ripper mangling rules
were also applied to generate some of the extra guesses required.
All three input dictionaries were then allowed to make 10
thousand password guesses against the FaithWriters list. The
results of this can be seen in Fig. 4.6.2.

Figure 4.6.2: Different Dictionaries vs. the FaithWriters List

As expected, the Singles.org dictionary performed slightly better
initially, but it was too small of a sample size to compete with the
custom RockYou dictionary over a longer password cracking
session. Both custom dictionaries performed better than the
default John the Ripper dictionary. This test illustrates that the
findings depicted in Section 4 can always be improved on as an
attacker gains more knowledge about their target. It also shows
the severity of when a password list the size of the RockYou list is
disclosed in how it can improve online password cracking attacks
against other sites.

Now it can certainly be argued, (with good reason), that the
results found in the previous tests would not hold true if an
attacker was targeting corporate or bank passwords. One counter-
example to that criticism would be to point out that the popular
micro-blogging website Twitter was once compromised due to a
site administrator choosing the password ‘happiness’ [27].
Needless to say, administrators and corporate employees are still
human. That is just one example though, and we freely admit
more research needs to be done on this subject.

5. Designing New Password Creation
Policies

First let us start by defining several terms. An explicit password
creation policy is any policy that can lay out the exact rules of
what constitutes an acceptable password to the user before the
user creates their password. Examples of this are minimum length
requirements, character type requirements, etc. An implicit
password creation policy is any policy that has a reject function
built into it based on estimated password strength. In addition, this
reject function may not be fully apparent to the user until they
create their password and submit it to the system. An example of
this is a blacklist of “weak” passwords that are not allowed.
Finally, an external password creation policy is a policy that
changes a user’s password after it is created in an attempt to add a
guaranteed amount of randomness. An example of this would be
adding two random digits to the end of a user’s password.

Second, it is important to note that the password creation policies
discussed in this section are done so in regards to an online
password cracking attack. In an offline password cracking attack,
it is assumed that an attacker can make hundreds of billions of
guesses, if not more. This means an offline password cracking
session is a much harder threat to defend against. As an example
of that, some of our earlier work cracking the phpbb.com list
using two desktop computers can be viewed at [11], where we

171

achieved over a 97% success rate during the course of a several
month cracking session.

As we’ve discussed in Section 4, while explicit password creation
policies can frustrate an attacker and reduce their chances of
success, they still leave a system vulnerable to an online password
cracking attack due to user behavior. Even more complex rules
such as requiring passwords to be 14 or even 21 characters long
may be subverted in some cases by users choosing common
keyboard combinations, or simply typing the same seven
character password in two or three times. Another way of looking
at it is that explicit password creation policies do not provide a
base level of security by themselves since people tend to follow
common patterns.

A very novel and intriguing idea was proposed in [12] to add a
limited amount of guaranteed security to explicit password
creation policies by randomly selecting a policy when users create
their passwords. Rules such as some users would have to include a
digit in their password; while other users would be forbidden from
using numbers, would be selected with a random chance. Since
the attacker would not know which set of rules the user created
their password under, they would then have to structure their
attack to target multiple creation policies. One potential problem
with this, besides user annoyance, is that this approach does not
stop a user from selecting a weak password under the random
policy. Since the number of policies is finite, an attacker may still
be successful by guessing the most common passwords for each
policy.

External password creation policies have also been considered by
several researchers. The advantage is that they provide a set
baseline of guaranteed randomness that is enforced by the system.
This guaranteed randomness is imposed by allowing the user to
select their base password, and then adding values to it that the
user would then have to remember. In a way this can be thought
of as a system selected PIN that has to be typed in along with the
user’s password, though the PIN is incorporated directly into the
password. The most extreme example of this is a completely
random password assigned to the user. There has been research to
make this approach more user friendly, such as assigning the user
a random passphrase instead of a random password [13]. Other
approaches have attempted to add randomness after the user
selects their password by appending or inserting random value to
it. The user would then have to remember these system defined
mangling rules as well. Perhaps the best study of this tactic has
been [14] where researchers attempted to examine user acceptance
of such a policy. One interesting point that they found was that as
more intrusive creation policies, (where additional random values
were inserted into the user’s password), were implemented, users
started selecting simpler base passwords. It’s hard to fault the
users for this behavior since there is a limit to what is easily
memorable.

The main problem with external password creation policies is that
they only function effectively if they are applied to a limited
number of logins. This is due to the fact that the system added
randomness would change between passwords used at different
sites. While this may be seen as a plus, as users would not be able
to re-use the exact same password across multiple accounts, the
chances of them re-using the same base password remains
extremely high. In addition, the main coping strategy for
remembering a large number of passwords that were created
under external password creation policies would most likely result
in a majority of users writing their passwords down. While it has

been argued by several security experts that writing down your
passwords might not be a negative trend [15], at the very least we
lose the flexibility and portability that fully human memorable
passwords provide.

This leaves us with implicit password creation policies. Besides
being used on their own, implicit password creation policy can
also be combined with other password creation policies as well.
For example a blacklist may be used along with an explicit
creation rule requiring the user to include at least one uppercase
letter. Also implicit policies by their very nature may need to be
retrained to take into account new user behavior caused by the
policy itself. To illustrate this, if the most common passwords are
banned, new common passwords may appear. The goal then is to
find a reject function that forces users to choose passwords
sufficiently different from each other to deter an online attack.

As shown in the experiments in the previous section, a blacklist
policy covering at least 50,000 prohibited passwords seems to
provide a large degree of security. The biggest issue with a
blacklist is that by itself it still may not provide enough security
for high value systems. This was demonstrated in Fig 4.3.2 where
even though the blacklist provided much more security than any
of the other explicit policies, it still had a failure rate of 0.84%
when an attacker was allowed 4096 guesses.

One potential solution to this problem is to take the grammar we
described in a previous paper [18] and use it to evaluate the
probability of user selected passwords. In that paper, we designed
a password cracking program that was trained on previously
disclosed passwords. Our current version of this cracking program
learns information such as the frequency people use certain words,
case mangling, basic password structure, the probability of digits
and special characters, etc. and uses that information to construct
a probabilistic context free grammar that models how people
select passwords. Our password cracker then proceeds to make
guesses in probability order according to that grammar. In head to
head tests with existing password cracking tools, this approach
proved to be much more successful at cracking passwords. We
originally designed our cracker for law enforcement to help them
deal with strong encryption, but we quickly found out that it was
also useful for the defender to give an estimate on how strong a
password actually was, or at least how different it was from the
grammar that the password cracker was trained on. Therefore we
can parse new passwords, and assign them a probability according
to a previously trained grammar. An example of parsing a
password, using a simplified grammar, can be seen in Fig. 5.1.

Figure 5.1 Parsing the Password “password123”

172

Once we have a probability associated with a password we can
very easily build a reject function that will disallow any password
whose probability falls above a set threshold. What’s more, since
our underlying system is built on the idea of context free
grammars, it becomes simple to select one or more productions
and randomly suggest a new replacement that would cause the
probability of the password to fall within acceptable limits. If the
user does not like any of the suggestions, they are also free to
select a new password on their own and resubmit it to the system.
An example of this process is shown in Fig. 5.2.

Figure 5.2: Rejecting a Weak Password and Suggesting a

Stronger One

Please note: the probability assigned to a password is not the
probability of an attacker cracking it, but instead the probability of
it being produced by our grammar. The probability threshold
would then be set through a series of benchmarks where the
remaining passwords productions are unlikely enough that they
don’t provide an attacker any high probability guesses to make.

There are several advantages to this approach. Almost certainly
the most important one is that the probability assigned to the
different mangling rules is learned from analyzing real user
behavior. This stands in stark contrast to methods like the NIST
SP800-63 where they had to decide if uppercasing a letter and
adding digits was worth 6 bits vs. 8 bits of entropy. Second, our
method assigns a probability score to an individual password vs.
an entire password creation policy. This leaves a user free to
construct the password however they like as long as their
password meets the acceptable probability threshold. For example
the user could choose a very long passphrase of all lowercase
letters, or have a much shorter password that included digits and
capitalization. Furthermore, by displaying the base probabilities of
the password, and suggesting new productions, our reject function
could help educate users as well about what constitutes a strong
password. In addition, by offering new suggestions or giving the
user a chance to select an entirely new password, our reject
function works very similar to how most websites and online
applications recommend new usernames when the selected one
has already been taken. This may help drive user acceptance of
this implicit password creation policy.

Just like our password cracking program can be retrained to target
specific individuals, additional modifications can be made to our
grammar to help resist targeted attacks. For example a special
dictionary can be designed to match usernames, website names,
project names, project acronyms, e-mail addresses, etc and give
them a higher probability then they normally would have. This

would not stop a user from incorporating them in their password,
but it would require them to apply additional non-standard
mangling rules for the password to be accepted.

This is merely a suggestion though, and much more research,
(such as actual use case studies), needs to be done before such a
password creation policy can be considered secure. The main
point though, and the reason why we put forward this idea, is to
highlight the fact that there are other approaches that can be taken
to strengthen the security of user generated passwords besides
forcing the users to create longer passwords with more character
requirements.

6. Conclusion
Our experiments categorically show that the notion of password
entropy, as put forward in the NIST SP800-63 document, does not
provide a valid metric for measuring the security provided by
password creation policies. This is not to cast dispersions at the
rest of the SP800-63 document which is otherwise of the highest
quality. Furthermore, we validated the findings in [7], using
empirical evidence, that there is no way to convert the notion of
Shannon entropy into the guessing entropy of password creation
policies.

Moving on from that, we then proceeded to evaluate the security
that common password creation policies, such as minimum
password length, and character set requirements provide against
online attacks. Our findings were that absent an external password
creation policy where the system manually adds randomness to a
user’s password, or an implicit policy where a reject function
disallows weak passwords, most common password creation
policies remains vulnerable to online attack. This is due to a
subset of the users picking easy to guess passwords that still
comply with the password creation policy in place, for example
“Password!1”. Whether such online attacks are feasible or cost
effective depends on other factors, such as lockout policy, value
of the target, user training etc. By conducting our experiments
using real life sets of disclosed passwords though, this provides a
much greater insight on how people create passwords and the
vulnerability of those passwords to attack.

Finally we put forward several other methods for password
creation policies, including our proposed method to evaluate the
probability of a human generated password by parsing it with a
grammar trained on previously disclosed password lists. This
allows us to build a more robust reject function compared to a
simple blacklist, while attempting to provide the most user
freedom possible, given the security constraints of the system,
when selecting their passwords.

More work remains to be done on this topic, as there still are
multiple issues that remain unresolved. For example, how do
passwords people use on high value targets, such as corporate
networks or bank accounts, compare with the passwords collected
from various other websites? It is a mixed blessing that the
opportunities for this research to be performed in the future are
only growing as more sites are compromised and more datasets
become public. It is our hope that this paper will expand the
discussion on using empirical data collected from non-standard
sources to evaluate the security that different policies and
technologies provide us.

7. Acknowledgements
This work was supported in part by the U.S. National Institute of Justice
under Grant 2006-DN-BX-K007. Also, we would like to acknowledge the

173

contributions that Breno de Medeiros and Bill Glodek made in the
development of the password cracking grammar described in this paper.

8. References
[1] W. Burr, D. Dodson, R. Perlner, W. Polk, S. Gupta, E.

Nabbus, “NIST Special Publication 800-63-1 Electronic
Authentication Guideline”, Computer Security Division,
Information Technology Laboratory, National Institute of
Standards and Technology, Gaithersburg, MD, April, 2006

[2] Office of Management and Budget, “Draft Agency
Implementation, Guidance for Homeland Security,
Presidential Directive 12”, August 2004.

[3] P. Bowen, A. Johnson, J. Hash, C. Dancy Smith, D.
Steinberg, “NIST Special Publication 800-66 An
Introductory Resource Guide for Implementing the Health
Insurance Portability and Accountability Act (HIPAA)
Security Rule”, Computer Security Division, Information
Technology Laboratory, National Institute of Standards and
Technology, Gaithersburg, MD.

[4] C.E. Shannon, "A Mathematical Theory of Communication",
Bell System Technical Journal, vol. 27, pp. 379-423, 623-
656, July, October, 1948.

[5] C. Herley, “So Long and No Thanks for the Externalities:
The Rationl Rejection of Security Advice by Users.” NSPW
09, September 8-11 2009 Oxford, United Kingdom.

[6] A. Vance, “If Your Password is 123456 Just Make it
HackMe” New York Times, January 20th, 2010. Page A1.

[7] E. R. Verheul. “Selecting secure passwords”, CT-RSA 2007,
Proceedings Volume 4377 of Lecture Notes in Computer
Science, pages 49–66. Springer Verlag, Berlin, 2007.

[8] J.L. Massey, “Guessing and Entropy,” Proc. 1994 IEEE
International Symposium on Information Theory, 1995,
p.329.

[9] The OpenWall Group, [Software] John the Ripper password
cracker, [Online Document] [cited 2-19-2010] Available
HTTP http://www.openwall.com

[10] A list of popular password cracking wordlists, 2005, [Online
Document] [cited 2010 January 14] Available HTTP
http://www.outpost9.com/files/WordLists.html

[11] M. Weir and S. Aggarwal. “Cracking 400,000 Passwords or
How to Explain to Your Roommate why the Power-Bill is a
Little High”, Defcon 17, Las Vegas, NV, August 2009

[12] J. Leversund “The Password Meta Policy” [Online
Document] [cited 2010 April 16] Available HTTP
http://securitynirvana.blogspot.com/2010/02/password-meta-
policy.html

[13] G. Bard, “Spelling-Error Tolerant, Order Independent Pass-
Phrases via the Damerau-Levenshtein String-Edit Distance
Metric” Fifth Australasian Symposium on ACSW Frontiers -
Volume 68 (Ballarat, Australia, January 30 - February 02,
2007), 117-124.

[14] A. Forget, S. Chiasson, P.C. van Oorschot, R. Biddle,
“Improving Text Passwords through Persuasion.”

Symposium on Usable Privacy and Security (SOUPS) 2008,
July 23–25, 2008, Pittsburgh, PA USA.

[15] B. Schneier, “Write Down Your Password”, June 17, 2005
[Online Document] [cited 2010 April 16] Available HTTP
http://www.schneier.com/blog/archives/2005/06/write_down
_your.html

[16] Various Authors, “Faithwriters.com hacked message posts”
[Online Document] [cited 2010 April 16] Available HTTP
http://forums.crosswalk.com/m_4252083/mpage_1/tm.htm

[17] B. Ryan, “The Hacking of the http://db.singles.org” [Online
Document] [cited 2010 April 16] Available HTTP
http://msmvps.com/blogs/williamryan/archive/2009/02/22/th
e-hacking-of-http-db-singles-org.aspx

[18] M. Weir, Sudhir Aggarwal, Breno de Medeiros, Bill Glodek,
“Password Cracking Using Probabilistic Context Free
Grammars,” Proceedings of the 30th IEEE Symposium on
Security and Privacy, May 2009.

[19] R. Morris and K. Thompson. “Password security: a case
history” Communications. ACM, 22(11):594–597, 1979.

[20] A. Narayanan and V. Shmatikov, Fast Dictionary Attacks on
Passwords Using Time-Space Tradeoff, CCS’05, November
7–11, 2005, Alexandria, Virginia

[21] J. Yan, A. Blackwell, R. Anderson, and A. Grant. Password
Memorability and Security: Empirical Results. IEEE
Security and Privacy Magazine, Volume 2, Number 5, pages
25-31, 2004.

[22] T. Wu, "A real-world analysis of kerberos password
security," in 1999 Network and Distributed System Security
Symposium, February 1999.

[23] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M.
Szydlowski, R. Kemmerer, C. Kruegel, and G. Vigna, "Your
botnet is my botnet: Analysis of a botnet takeover," Tech.
Rep., April 2009.

[24] Sophos, “Security at risk as one third of surfers admit they
use the same password for all websites”, [Online Document]
[cited 2010 July 14] Available HTTP
http://www.sophos.com/pressoffice/news/articles/2009/03/pa
ssword-security.html

[25] L. Clair, L. Johansen, W. Enck, M. Pirretti, P. Traynor, P.
McDaniel and T. Jaeger, “Password Exhaustion: Predicting
the End of Password Usefulness” ICISS, volume 4332 of
Lecture Notes in Computer Science, pages 37-55, 2006.

[26] J. Bonneau, S. Preibusch, “The Password Thicket: Technical
and Market Failures in Human Authentication on the Web”,
The Ninth Workshop on the Economics of Information
Security, WEIS 2010.

[27] K. Zetter, “Weak Password Brings ‘Happiness’ to Twitter
Hacker” [Online Document] [cited 10`0 July 19] Available
HTTP http://www.wired.com/threatlevel/2009/01/professed-
twitt/

174

Appendix 1: Information about the Password Lists

The RockYou.com List:

This list was originally obtained by a hacker via a SQL injection against the RockYou.com website [6]. The actual exploit code was first
disclosed on the darkc0de.com blackhat message board, where multiple hackers took advantage of it. One of them later publicly posted the
list and it is now widely available. Theoretically the RockYou website has a password creation policy requiring passwords to be between 8
and 14 characters long and to NOT include any special characters. This may have been implemented after the attack since the actual list
contains many passwords that do not meet those requirements. The RockYou list also includes multiple passwords for various social
networking sites such as Facebook, MySpace and Friendster. The list we managed to obtain did not include any usernames or e-mail
addresses.

The FaithWriters.com List:

It is unknown how this site was broken into, but most likely it was due to an SQL injection attack [16]. In the list we obtained, both the e-
mail address and the password were included. The FaithWriters website was primarily composed of Christian writers. It is suspected that
the attacker who hacked the site was associated with the 4chan.org or Ebaumsworld message boards. The faithwriters website had a
minimum password length requirement of six characters long, and except for six passwords in the list, all of the passwords complied with
it.

The Singles.org List

The singles.org site was broken into via query string injection, (aka all authentication was done via URLs) [17]. The site advertised itself as
a dating website for Christian singles. The news of the hack quickly spread to the 4chan.org and ebaumsworld message boards where users
there quickly exploited the vulnerability to gain access to all of the passwords on singles.org. In many cases, the malicious attackers then
used those passwords to log into other accounts belonging to the users of singles.org. Since many people choose the same password for all
of their online accounts, this lead to several serious compromises of Facebook accounts, webmail accounts, Amazon.com accounts, Paypal
accounts, etc. The password creation policy of the site required all passwords to be eight or less characters long. This list we obtained
contained e-mail addresses and passwords.

The Neopets.com List

It is unknown how this list was originally obtained, but there is a high probability it was done via a phishing attack. Researchers first
became aware of this list when it was posted publicly on the pastebin.com website. While it is possible that this list is not associated with
the Neopets site, that is unlikely due to the large number of passwords that correspond to common neopets terminology. Neopets.com is
website game where users raise electronic pets and battle each other. The game itself is primarily targeted to a younger audience. The
password list contained e-mail addresses and passwords.

The PhpBB.com List

The PhpBB list was originally obtained by a hacker who exploited a flaw in a 3rd party plug-in associated with the phpbb bulletin board
software [11]. This is ironic since the site itself is the main development website for that bulletin board. The site did not store user
passwords in plain text. Instead all of the passwords were hashed using either one round of MD5, or using a salted hash, (consisting of
several thousand rounds of MD5). The reason for these two hashing algorithms was that the site had upgraded their forum software, but
until a user logged in, they were not converted to the new password hashing scheme. The attacker had attempted to crack a subset of the
passwords using an online password cracking program, and managed to crack only 24% of the passwords they targeted. The attacker then
proceeded to publish online all of the password hashes, the passwords they managed to crack, along with a write-up of their attack. Since
then we have managed to independently crack 97% of all the MD5 hashed passwords from this set using two desktop computers. The
PhpBB site did not enforce any password creation policy.

Appendix 2: Statistical Breakdown of the Password Lists

 RockYou.com* FaithWriters.com Singles.org Neopets.com Phpbb.com**

Number of Passwords 32,603,388 total 6,193 24,870 11,732 259,424

Average Password Length 7.88 characters 7.69 characters 6.62 characters 6.68 characters 7.27 characters

% that Contain Uppercase 5.95 9.43 8.51 2.53 7.21

% that Contain Digits 54.08 43.54 32.88 57.19 45.77

% that Contain Special Chars 3.45 0.14 0.20 1.78 1.33

% that Only Contain
Lowercase Letters and Digits

90.76 90.50 91.31 95.61 91.55

% that are 7+ Chars Long, and
Contain Uppercase,
Lowercase, Digits + Special

0.14 0.03 0 0 0.11

*The RockYou password statistics are taken from the RockYou32 training list which contained 1 million randomly selected passwords
**The Phpbb statistics only include the 97% of passwords we managed to crack

175

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064506390020064506420627064A064A0633002006390631063600200648063706280627063906290020062706440648062B0627062606420020062706440645062A062F062706480644062900200641064A00200645062C062706440627062A002006270644062306390645062706440020062706440645062E062A064406410629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd00630068002000700072006f002000730070006f006c00650068006c0069007600e90020007a006f006200720061007a006f007600e1006e00ed002000610020007400690073006b0020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003b103be03b903cc03c003b903c303c403b7002003c003c103bf03b203bf03bb03ae002003ba03b103b9002003b503ba03c403cd03c003c903c303b7002003b503c003b903c703b503b903c103b703bc03b103c403b903ba03ce03bd002003b503b303b303c103ac03c603c903bd002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405E605D205D4002005D505D405D305E405E105D4002005D005DE05D905E005D4002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata pogodnih za pouzdani prikaz i ispis poslovnih dokumenata koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF00410020006800690076006100740061006c006f007300200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d0065006700740065006b0069006e007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200073007a00e1006e0074002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c00200068006f007a006800610074006a00610020006c00e9007400720065002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f0020006e00690065007a00610077006f0064006e00650067006f002000770079015b0077006900650074006c0061006e00690061002000690020006400720075006b006f00770061006e0069006100200064006f006b0075006d0065006e007400f300770020006600690072006d006f0077007900630068002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e007400720075002000760069007a00750061006c0069007a00610072006500610020015f006900200074006900700103007200690072006500610020006c0061002000630061006c006900740061007400650020007300750070006500720069006f0061007201030020006100200064006f00630075006d0065006e00740065006c006f007200200064006500200061006600610063006500720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f043e04340445043e0434044f04490438044500200434043b044f0020043d0430043404350436043d043e0433043e0020043f0440043e0441043c043e044204400430002004380020043f04350447043004420438002004340435043b043e0432044b044500200434043e043a0443043c0435043d0442043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020007000720069006d00650072006e006900680020007a00610020007a0061006e00650073006c006a00690076006f0020006f0067006c00650064006f00760061006e006a006500200069006e0020007400690073006b0061006e006a006500200070006f0073006c006f0076006e0069006800200064006f006b0075006d0065006e0074006f0076002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005400690063006100720069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900720020015f0065006b0069006c006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

