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ABSTRACT 
In this paper we attempt to determine the effectiveness of using 
entropy, as defined in NIST SP800-63, as a measurement of the 
security provided by various password creation policies. This is 
accomplished by modeling the success rate of current password 
cracking techniques against real user passwords. These data sets 
were collected from several different websites, the largest one 
containing over 32 million passwords. This focus on actual attack 
methodologies and real user passwords quite possibly makes this 
one of the largest studies on password security to date. In addition 
we examine what these results mean for standard password 
creation policies, such as minimum password length, and 
character set requirements. 

Categories and Subject Descriptors 
D.4.6 [Operating Systems]: Security and Protection –
Authentication   

General Terms 
Security, Human Factors, Measurement 

Keywords 
Password Cracking, Cybercrime, Password Policies 

1. Introduction 
Secure password generation is complicated by the tradeoff 
between developing passwords which are both challenging to 
crack and usable. Truly random passwords are difficult for users 
to memorize, and user-chosen passwords may be highly 
predictable.  Password policies attempt to mediate between these 
two goals by forcing users to incorporate additional complexity 
into a password, such as by mandating the user include an odd 
character or use passwords of some minimal length. However, 
these policy mechanisms are hampered by an ill-defined 
understanding of their actual effectiveness against real attack 
techniques, and by circumvention strategies employed by the 
users.  For example, a policy mandating that a user include at least 
three digits in a password will often result in the user simply 
appending “123” on the end of an insecure password.  A 
sufficiently sophisticated password cracker will be aware of these 
strategies and incorporate mechanisms for breaking them into 
their tools.  

It is unlikely any other document has been as influential in 
shaping password creation and use policies as the NIST Electronic 
Authentication Guideline SP-800-63 [1]. The findings and 
recommendations published in it have proven the basis for many 
government and private industry password policies [2, 3]. Central 
to this document is the notion of measuring password entropy. 
The idea of information entropy was first formalized by Claude 
Shannon [4] as an approach to measure the amount of information 
that is unknown due to random variables. In a way, it attempts to 
determine the randomness of a variable based upon knowledge 
contained in the rest of the message. Most often this randomness 
or information is expressed using the following equation: 

۶ሺܠሻ ൌ െ ∑ ሻܑܠሺ۾

ୀ ܗۺ  ሻ                              1ܑܠሺ۾

For example, a fair coin flip would land as heads 50% of the time. 
The resulting entropy of modeling a single fair coin flips would 
then be െ ∑ .ሺ۾ ሻ

ୀ ܗۺ .ሺ۾ ሻ which is equal to 1 bit of 
entropy. Each successive flip of the coin would add an additional 
bit of entropy as the result is a summation across all of the 
variables xi. The context for Shannon’s research was to determine 
the amount of lossless compression that can be performed to store 
or transmit a message. In the previous case, the smallest message 
on average that could be sent describing the results of a run of 
completely fair coin flips would require at least one bit of data per 
coin toss. 

What the NIST standard did was attempt to use the concept of 
Shannon’s entropy for estimating the strength of password 
creation policies against online password cracking attacks. As 
we’ll show in the following sections, this unfortunately is not a 
valid approach. While the Shannon entropy value would be useful 
to determine on average the minimum amount of space required to 
store or transmit a human generated password, it has no relation to 
the guessing entropy of a password. To put it another way, even 
with an accurate Shannon entropy value, it would not tell the 
defender anything about how vulnerable a system would be to an 
online password cracking attack. 

If the Shannon entropy value is not useful when determining the 
strength of a password creation policy, then the question remains, 
what is the benefit of different password creation rules?  Is an 
eight character password on average stronger than a seven 
character password, and if so, by how much? Even in the NIST 
SP800-63 publication when attempting to gauge how much 
entropy is added to a system due to various creation policies, the 
authors themselves state, “Unfortunately, we do not have much 
data on the passwords users choose under particular rules.” A 
related paper authored by a Microsoft researcher [5], which 
attempted to gauge the security provided by strong passwords, 
raised much the same point: “As far as we are aware, there is no 
data available on strength related attacks on passwords of web-
sites that maintain lockout policies.” 
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Our approach then in this paper is twofold. First, we demonstrate 
that the use of Shannon’s entropy as defined in NIST SP800-63 is 
not an effective metric for password security. Second we attempt 
to gauge the security provided by conventional password creation 
rules. We accomplish both of these tasks by performing standard 
password cracking attacks against multiple sets of real life 
passwords. These passwords, which will be described in more 
detail in Section 4, and Appendix 1 and 2, were all obtained from 
publicly disclosed hacking attacks. This is where an attacker 
collected the passwords, either through a phishing attack, or 
compromising a website, and for whatever reason posted the 
password lists online. These lists in some cases can be quite large, 
as in the RockYou set [6] which contained over 32 million 
passwords. Admittedly these datasets can be problematic, since 
none of them represent corporate logins. A counter-example can 
easily be made that people on average choose stronger passwords 
for more sensitive sites. That being said, these datasets still 
represent a significant number of user password creation strategies 
and can be applied to evaluate the expected success rate of 
different types of attacks. We hope this focus on real passwords 
and real attack methodologies can provide a better understanding 
of the effectiveness of different password creation policies.  

The remainder of this paper is structured as follows: Section 2 
details some of the previous work done in this area. Section 3 
covers the NIST SP800-63 model of password entropy. Section 4 
illustrates why that the NIST notion of password entropy does not 
provide an accurate view of password security. Section 4 further 
goes on to demonstrate the effectiveness of password cracking 
strategies against traditional password creation rules. Finally 
Section 5 discusses password creation policies that might be more 
applicable when defending against online attacks. 

2. Previous Work 
There have been several previous attempts to measure password 
security by analyzing real life passwords. One of the first papers 
to take this approach was written in 1978 by R. Morris and K. 
Thompson [19]. They found that in a group of around 3,000 users, 
1/3rd of the passwords were vulnerable to a dictionary attack 
containing 250,000 words. When combined with a limited brute 
force attack, they estimated over 86% of the passwords could be 
cracked. Since then several other studies have found similar 
results. In [20], A. Narayanan, and V. Shmatikov ran experiments 
against 142 real user passwords and were able to break 67.6% of 
them using a Markov based brute force attack. In [21], Yan, 
Blackwell, and Anderson found when testing a group of 300 
student passwords, 32% of the control group was cracked via a 
limited dictionary based attack. In [22], Wu collected over 25 
thousand Kerberos v4 tickets and attempted to crack the 
corresponding user passwords. In that experiment, only 8.1% of 
the passwords were cracked over a two week period due to the 
computational complexity of making a password guess. Perhaps 
the largest previous study on password security was done by 
Stone-Gross et al when his team temporarily took over the torpig 
botnet [23]. During the ten day period they had control of the 
botnet, their group collected over 297 thousand unique 
username/password pairs from 52 thousand infected computers. 
To test the strength of the plaintext passwords collected, they 
hashed 173 thousand unique passwords with the MD5 hashing 
algorithm and then proceeded to use the popular password 
cracking tool John the Ripper to try and crack the hashes using an 
offline attack. During the course of a 75 minute cracking session, 
the team managed to break over 40% of the passwords. What’s 

more, they found that 28% of users re-used the same password 
across multiple sites. This closely matches an earlier study by 
Sophos [24], where 33% of users polled admitted to using the 
same password for all of their internet logins. If this holds true, 
that means passwords gathered from low value targets, such as 
social networking websites, might successfully be used by an 
attacker to target higher value targets such as webmail and bank 
accounts. It also means that the results of studying these “low 
value” passwords may provide us insight into the effectiveness of 
password creation policies for higher value sites. 

That being said, none of the above studies focused specifically on 
the security that password creation policies actually provide, such 
as the effect password length has on password strength. There has 
been some research into how effective the notion of Shannon 
entropy is for measuring password strength, (and by extension the 
recommendations put forward by NIST 800-63). The most notable 
papers covering the subject have been [7, 8], but those studies 
focused exclusively on the theoretical underpinnings of trying to 
convert the Shannon entropy to the Guessing entropy of a system, 
and did not verify their findings using real user passwords. In the 
pessimistically titled paper, “Password Exhaustion: Predicting the 
End of Password Usefulness” [25], Clair et al, attempted to 
evaluate the search spaces produced by different password 
creation policies along with their resistance to attack. They found 
that certain password policies might actually weaken systems 
against brute force attacks due to the reduction in key space. They 
then collected 3,500 student passwords and attempted to crack 
them using a 20 node cluster of computers. This resulted in their 
team breaking 34% of the passwords in five days, with a vast 
majority of these passwords, (almost 90% of the cracked 
passwords), falling to brute force attacks. Unfortunately, their 
tests did not attempt to measure security provided, (or reduced), 
by the application of different password creation policies beyond 
their resistance to brute force attacks.  Therefore, we feel that the 
results and strategies detailed in this paper are fairly novel as we 
attempt to gauge the security of password creation policies by 
examining real user passwords and their resistance to dictionary 
based attacks. 

One other paper that bears mentioning is a survey of password 
creation and storage policies among several popular websites by J. 
Bonneau and S. Preibusch [26]. There are too many interesting 
findings from that paper to list here, and it is highly recommended 
reading to help put the results detailed later in this paper into 
context with how password policies are currently implemented. 
For example, a vast majority of the websites Bonneau and 
Preibusch examined, including sites such as eBay, Amazon.com, 
and Wordpress, did not support rate limiting the number of 
guesses allowed to an attacker. 

3. Password Entropy per NIST SP800-63 
As mentioned previously, the password recommendations 
provided in the NIST document are based on the idea of 
information entropy. Building on the notion of entropy detailed in 
Equation #1, it can further be expanded by noting that the entropy 
of several random variables can be modeled as: 

۶ሺܠ, ሻܡ  ۶ሺܠሻ   ۶ሺܡሻ                           2 

In the NIST document, they attempt to define these random 
variables by specifying how they are created through the use of 
common password creation policies. These random variables can 
be viewed as representing an unknown value that an attacker 
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would have to guess when attempting to crack a password. Each 
variable is assigned an entropy score, and the sum of all the 
entropy scores is added up to create a final entropy total for the 
entire system using Equation 2. The entropy score for each 
variable is assigned using the following criteria which is quoted 
directly from the original NIST paper: 

1. The entropy of the first character is taken to be 4 bits; 
2. The entropy of the next 7 characters are 2 bits per 

character; this is roughly consistent with Shannon’s 
estimate that “when statistical effects extending over not 
more than 8 letters are considered the entropy is roughly 
2.3 bits per character;” 

3. For the 9th through the 20th character the entropy is taken 
to be 1.5 bits per character; 

4. For characters 21 and above the entropy is taken to be 1 
bit per character; 

5. A “bonus” of 6 bits of entropy is assigned for a 
composition rule that requires both upper case and non-
alphabetic characters. This forces the use of these 
characters, but in many cases these characters will occur 
only at the beginning or the end of the password, and it 
reduces the total search space somewhat, so the benefit is 
probably modest and nearly independent of the length of 
the password; 

6. A bonus of up to 6 bits of entropy is added for an 
extensive dictionary check. If the Attacker knows the 
dictionary, he can avoid testing those passwords, and will 
in any event, be able to guess much of the dictionary, 
which will, however, be the most likely selected 
passwords in the absence of a dictionary rule. The 
assumption is that most of the guessing entropy benefits 
for a dictionary test accrue to relatively short passwords, 
because any long password that can be remembered must 
necessarily be a “pass-phrase” composed of dictionary 
words, so the bonus declines to zero at 20 characters. 

There has been some confusion based on the examples given in 
the NIST document whether rule #5 requires numbers and special 
characters to both be present or if the presence of either one would 
allow assigning of the “bonus” six bits of entropy. If such a 
distinction is important in any of the tests in this paper, the 
method to calculate rule #5 will be explicitly stated. 

As an illustration of using the above model , consider a password 
creation policy requiring nine character passwords, and for at least 
one uppercase letter, lowercase letter, digit, and special character 
to be present. The resulting NIST entropy score would then be 
calculated as 25.5 bits of entropy as seen in Fig 3.1. 

 
Figure 3.1: Example Calculation of NIST Entropy 

The next step is to translate the resulting entropy score into a 
measure of security provided by the password creation policy. If 

the entropy calculation is equivalent to a uniformly distributed 
randomly generated key of length H(x), this becomes possible due 
to the following equation: 

Chance of success = Number of Allowed Guesses / 2H(x)    3 

For example, an attacker will have a 50% chance of cracking a 
random key if they can search half of the key-space. If the 
security threshold of the risk allowed is known, (aka it is 
acceptable for the key to be successfully guessed with a certain 
probability), Equation 3 can easily be rewritten to then provide the 
maximum number of guesses that an attacker should be allowed 
while maintaining a set level of risk. The NIST SP800-63 
document does this by designating two different levels of 
acceptable risk. For a password policy to meet a Level 1 
certification, the chance of an attacker succeeding should be 1 in 
1024. For a Level 2 certification, the attacker’s success rate 
should be limited to 1 in 16,384. The resulting number of guesses 
allowed an attacker would then be: 

Level 1: Number of Allowed Guesses = 2H(x) x 2-10
             4 

Level 2: Number of Allowed Guesses = 2H(x) x 2-14             4 

Given these equations, and the ability to calculate H(x), the idea is 
to allow a defender to tailor their password creation policy to the 
level of security that is required and the expected number of 
guesses that an attacker would be allowed, (either via password 
lockout policy, or rate limiting). The potential problems with this 
approach are 1) Does the calculation for H(x) correspond to user 
behavior, and 2) Is the Shannon Entropy value equivalent to a 
uniformly distributed random key for security purposes? Question 
#2 was addressed in [7, 8], and it has been shown that the 
Shannon Entropy value is not equivalent to guessing entropy 
value. The reason behind this is that the distribution of values is 
not uniform across the key-space. A quick counter-example to 
demonstrate this: For Equation 4 to hold true when applied to 
passwords, the proportion of passwords cracked would have to 
increase linearly with the number of guesses made. The examples 
shown later on in Section 4 clearly show this is not the case.  

In [7], an alternate metric for measuring password strength was 
proposed, but as the authors admit, it is only applicable for 
situations such as one-time keys, and not for human generated 
passwords intended for day-to-day use. Therefore because the 
Shannon Entropy does not correlate to the Guessing Entropy, this 
paper will focus on answering question #1, and more specifically, 
how much security is provided by existing password creation 
rules, such as specifying a minimum password length, or requiring 
a digit. In addition, we will also refer back to the SP800-63 notion 
of entropy to further provide empirical evidence of its 
shortcomings to back up the proofs already laid out in [7, 8]. 

4. Effectiveness of Entropy against 
Password Cracking Attacks 

In this section, we evaluate the entropy scoring provided by NIST 
SP800-63 document against common password cracking 
techniques and real life datasets.  The intent of this analysis is to 
provide additional insights into the effectiveness of password 
creation policies, and to evaluate the value of the SP800-63 notion 
of entropy in regards to actual password cracking attacks.  

4.1 Experiment Methodology 
To evaluate the security provided by password creation policies 
we need to be able to model the threats against them. For this 
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paper we are primarily concerned about online password cracking 
attacks, where the security of the system is still operational. In an 
online attack, the attacker selects a set of targets and applies a 
number of guesses in an attempt to crack them. Each guess is 
applied sequentially against each target, and a target is removed 
from evaluation when a guess matches the target’s password. In 
the context of this analysis, a “guess” is therefore a guess against 
each target in the target set.  That is, if we state that we are 
applying “500 guesses”, we mean 500 guesses per target. 

This model allows us to score password attacks as a function of 
success per guesses invested. We expect that most online systems 
follow a per-target lockout policy, meaning that if more than some 
threshold of attacks are made against a target in a limited period, 
that target and only that target are temporarily locked out. The 
cost of making guesses against two targets is therefore no more 
than the cost of making a guess against a single target.  

We can slightly modify our approach if the defender uses a global 
lockout policy (i.e., if the defender locks out all targets if attacks 
exceed a certain threshold). If all of the targets are of equal worth, 
an attacker will spend their time making the most probable 
guesses against each target. Therefore the attack strategies remain 
the same. The one difference is our simulation of per-target 
lockout policy presents a slightly optimistic view for the defender 
if a global lockout policy is in place since in a real life attack, if an 
attacker manages to crack a password they will stop making 
guesses against it and use their time to focus on the remaining 
passwords instead. That caution also applies to the rest of the 
results in this paper, as it is always possible for an attacker to 
come up with attack methods that performs better than the ones 
we modeled. 

The majority of tests in this paper use passwords collected from 
the RockYou password list [6]. The RockYou set was originally 
obtained by an attacker who utilized a SQL injection attack 
against the rockyou.com website, and then later posted the 
passwords online. RockYou provided applications for numerous 
social networking sites such as Facebook, MySpace, and 
Friendster, and thus included the associated login details created 
by users for those sites. The actual list itself contained over 32 
million passwords. Due to the list’s size, we used the GNU shuf 
tool to randomize it and then divided the list into 32 sub-lists 
containing one million passwords each. This allows us to run 
experiments against a smaller set of passwords, while leaving 
other sub-lists untainted for use in future tests. Using standard 
machine learning techniques, currently we have assigned the first 
five sub-lists, RockYou_test1 through RockYou_test5, as part of a 
test set, while the last five sub-lists, Rockyou-train28 through 
RockYou_train32 for use in training new attacks. Therefore we 
are not training and testing against the same passwords. 

Because the RockYou list represents passwords collected from a 
diverse set of web sites, there is no single password creation 
policy that affects all of the words in the list. We can therefore 
examine the resulting distribution of these passwords as evaluated 
by the SP800-63 entropy score. To model this, the maximum 
entropy value for a creation policy which a password could be 
generated under was evaluated using the rules NIST put forward, 
with Rule 5 being interpreted as requiring numbers, special 
characters and uppercase. In addition, it is assumed that no 
blacklists of forbidden passwords were used. The resulting graph 
measuring the maximum entropy score for passwords from the 
RockYou_test1-3 sets can be seen in Fig 4.1.1. 

 
Figure 4.1.1: Maximum SP800-63 Password Creation Policies 

of the RockYou Data-Set 

The NIST entropy values displayed ranged from 4, (the minimum 
possible under the SP800-63 rules), to 32. The highest entropy 
value detected was 278, (which may have represented a password 
created by a spammer or a junk value that was somehow imported 
into the database). The above results also give a general 
breakdown of the password length distribution, since very few 
passwords managed to meet Rule #5. This is also why there were 
very few passwords which had an entropy value of 22 or 24. Since 
there was no uniform password creation policy in effect, the 
results in Fig 4.1.1 are likely to be a reasonable estimate of 
“normal” user password generation.   

4.2 Minimum Password Length, Digits, and 
Why Password Entropy is not Valid 

The next step is to attempt to evaluate the impact of individual 
password creation policies on the success of password cracking 
attacks. The first creation policy we will examine is minimum 
password length. Since we did not have examples of users 
creating passwords under different length password creation 
policies, we attempted to model these policies by further dividing 
the test lists based on the minimum length passwords found in 
them. Therefore a “7+ sub-list” would contain all the passwords 
from the parent list that were seven or more characters long. 

For the first test, we wanted to show a longer password cracking 
session that would probably only be performed in an offline 
attack. While the SP800-63 document is more concerned with 
online attacks, we felt that the results were useful for comparison, 
and for modeling other threats. To simulate an offline attack, the 
popular cracking tool John the Ripper [9] was used, along with its 
“Single mode” rule-set, (a collection of rules which create a much 
longer password cracking session than their default rule-set). 
Since this is a dictionary based attack, the input dictionary used 
was Dic-0294, which is a commonly used password cracking 
dictionary [10]. This dictionary contained 869,228 unique words, 
and the number of guesses was significantly higher due to every 
mangling rule being applied to each applicable word. Since it can 
be assumed that the attacker has knowledge of the password 
creation policy, we did not permit John the Ripper to make 
guesses shorter than what was allowed for the list it was targeting. 
The results of running these cracking sessions against the 
RockYou_test1 list divided in subsets by minimum password 
length can be seen in Fig 4.2.1. The percentage cracked refers to 
the number of passwords cracked in each individual sub-list, and 
not of the total set. 
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Figure 4.2.1: Results of Minimum Password Length on 

Longer Password Cracking Sessions 

Fig 4.2.1 shows that the effectiveness of each attack was 
influenced by the minimum password length; however before we 
examine the impact of minimum password length we must 
consider several other possible causes that may have influenced 
this decrease in password cracking effectiveness. One possible 
issue is that the division of the lists based on minimum password 
length was done artificially, since the RockYou site did not 
enforce a uniform password creation policy. This might lead to an 
unequal distribution of the security minded users between the 
different sub-lists based on password size. For example, people 
who created longer passwords when they didn’t need to, (based on 
policy), might inherently choose a stronger password than users 
who create the simplest password allowed. Since none of the test 
sets we have access to enforced a password policy requiring users 
to create passwords longer than six characters long, verifying if 
this occurs is problematic. Therefore the best we can do is 
evaluate the composition of passwords in the different sub-lists to 
see if there are any noticeable differences in password creation 
strategies between the different sub-lists beyond minimum 
password length The results of this can be seen in Table 4.2.1. 

Table 4.2.1 Password Information from the RockYou1 List 

Character Set  7+ Chars 8+ Chars 9+ Chars 10+ Chars 

Contains Digits 57.5% 59.5% 60.2% 60.0% 

Contains Special 
Characters 

4.4% 5.1% 6.6% 8.0% 

Contains 
Uppercase 

6.5% 6.7% 6.9% 7.1% 

Contains Only 
Lowercase 
Letters, Digits 

89.2% 88.4% 86.7% 85.1% 

As expected, as shorter passwords were excluded, the average 
complexity of the remaining sets increased. Of note is that as the 
length of the passwords increased, their composition also becomes 
more complex. From 7+ character passwords to 10+ character 
passwords, the probability of a special character nearly doubles, 
and the probability of uppercase characters increases by 10%.  
These results imply that users picking longer passwords were also 
either forced by policy or preference to add additional security 
features. To further confirm this, the above lists were once again 
divided to only include passwords containing at least one digit. 
Likewise, the password cracking attacks were modified so they 
only produced guesses that contained digits as well. This test has 
an additional bonus of allowing us to evaluate the effectiveness of 
requiring a digit in a password creation policy since we can 
compare it to the previous test in Fig 4.2.1. The results of re-

running the password cracking attacks when digits are required 
can be seen in Fig. 4.2.2. 

 
Figure 4.2.2: Results of Minimum Password Length and 
Requiring Digits on Longer Password Cracking Sessions 

The test shows, that even when all passwords sets were required 
to contain digits, there still was a noticeable difference in the 
effectiveness of the attacks against the different test sets divided 
by minimum password length. That being said, the divergence 
between the test sets was less than if no digits were required; The 
attack against the 7+ character set performed worse when digits 
were required, and the attack against the 10+ character set 
surprisingly performed slightly better when digits were required. 
Note: it would probably be the wrong conclusion to assume that 
requiring digits would make 10 character long passwords weaker. 
What more likely happened was that this additional rule excluded 
“junk” passwords in the list that did not correspond to an actual 
user generated password, (for example some very long URLs 
were present in the RockYou list). In addition several passwords 
may have been created in a way that made them strong but did not 
include digits, such as certain pass-phrases. By excluding digits, 
some of these strong passwords may have been excluded as well. 
The biggest difference though, from a defender’s perspective, is 
that the requirement of a digit to be present significantly 
decreased the effectiveness of the password cracking attack in the 
first hundred million guesses. 

Looking at how users incorporated digits into their passwords, 
Table 4.2.2 shows the most popular digits used in the 
RockYou_Training32 list. 

Table 4.2.2: Top Ten Digits Found in the RockYou32 List 

Rank Digit Percentage  Rank Digit Percentage 
#1 1 10.98%  #6 123456 1.74% 
#2 2 2.79%  #7 12 1.49% 
#3 123 2.29%  #8 7 1.20% 
#4 4 2.10%  #9 13 1.07% 
#5 3 2.02%  #10 5 1.04% 

This means that the top 10 digits counted for roughly 26% of the 
total digits used. If we further mandate that a password must 
include an alpha character as well, (a-zA-Z), the results in Table 
4.2.2 remain mostly the same, with the main changes being that 
the number ‘123456’ drops out of the top 10, and that the number 
‘1’ by itself becomes more frequent with it appearing 15.44% of 
the time. Likewise, the coverage of the top 10 digits increases to 
36.25% of the total count. 

Of course, what is also important is how those digits are actually 
used in the password itself. For example the digit could be 
appended at the end of the password, ‘secret123’, before the 
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password, ‘123secret’, or used in the middle of the password, 
‘s3cr3t’. To better understand how people incorporate digits into 
their passwords, Table 4.2.3 shows where the digits appeared in 
seven character or longer passwords taken from the 
RockYou_Train32 password list. 

Table 4.2.3:  How Digits are used in 7+ Character Passwords 

Location Example Percentage 
All 
Digits 

1234567 20.51% 

After password123 64.28% 
Before 123password 5.95% 
Other passw0rd, pass123word, p1a2ssword, … 9.24% 

It shouldn’t come as a surprise that most people simply add digits 
to the end of a base word when creating a password. If we filter 
the training list to only include passwords that also contained one 
non-digit, the number of users who appended a digit to the end of 
their password jumped to 77.46%. When running additional tests, 
we found that an attacker could crack 11.06% of 7+ character 
passwords which included at least one digit and one non-digit, just 
by appending the number ‘1’ to the end of their password guesses. 
In an attempt to gain a better understanding of how people used 
digits that fell into the ‘other’ category, we performed a manual 
analysis of a number of the passwords in the training set. We 
found a vast majority of them used digits as letter or word 
replacements. Word replacements such as replacing ‘for’ with ‘4’, 
and ‘to/too/two’ with ‘2’ seemed particularly popular. Several 
other strategies, such as using keyboard combinations, for 
example ‘1qaz2wsx’, and ASCII art, ‘alice<3bob’, were also 
noticed. There were also several passwords where a digit was 
followed by a special character, such as ‘password1!’. While most 
replacements, (except for the most commonly used ones such as 
‘passw0rd’), are unlikely to be targeted in an online attack, an 
attacker can certainly make use of this knowledge when 
conducting an offline dictionary attack. 

The next step is to evaluate what effect increasing the minimum 
password length has on the effectiveness of an online password 
cracking attack. To accomplish this, we must first determine a 
relevant method to compare the success of different password 
cracking attacks to each other. This is not a trivial problem. One 
approach would be to compare the final number of passwords 
cracked. A problem with this approach is: how long should the 
cracking session be limited to? As an example of that, Fig 4.2.3 
shows the same cracking sessions detailed in Fig. 4.2.1, but this 
time limited to 50 thousand guesses. 

 
Figure 4.2.3: Results of Minimum Password Length on 

Shorter Password Cracking Sessions, Un-optimized Attack 

At first glance, the results depicted in Fig 4.2.3 are decidedly 
mixed with the minimum length only making a noticeable 

difference in the effort required to crack 10+ character long 
passwords. This is deceiving though, since the attack was not 
intended/optimized for that short of a password cracking session. 
As evidence of that, the input dictionary itself, dic-0294, 
contained over 800 thousand words. This shows the importance of 
measuring attacks that are tailored to the number of guesses 
allowed. It is interesting though that even in this un-optimized 
attack, each of the cracking sessions nearly cracked 1% of the 
total passwords. We’ll see in the next test though that, 1% cracked 
over 50,000 guesses is actually a poor success rate and we can do 
much better using an optimized attack.  

Another method to measure the relative effectiveness of a 
password cracking session would be to determine how many 
guesses were required to crack a certain percentage of passwords. 
This approach can also be problematic, as it is highly dependent 
on the percentage set. This can be seen in the previous figures 
4.2.1 and 4.2.2, as a password cracking session will start out fast, 
but quickly slow down as it takes more and more guesses to crack 
each successive password.  

To that end, since the SP800-63 document is primarily concerned 
with defending against online password cracking attacks of a 
limited number of guesses, it is useful to see the success rate of a 
password cracking attack specifically tailored for shorter attack 
runs. To set the next test up, we combined the training password 
lists RockYou_train28 through RockYou_train32 to create a 
training list of five million user passwords. This entire training list 
was then sorted by the number of occurrences of each password, 
(so the new list’s first password was ‘123456’), with all duplicate 
guesses then being removed. This resulted in an input dictionary 
where the most probable guesses are tried first. Using this targeted 
input dictionary, we once again ran attacks against the 
RockYou_test1 list. The results of these attacks when limited to 
50k guesses using this targeted dictionary can be seen in Fig 4.2.4. 
The reason a limit of 50k guesses was selected was that it seemed 
a reasonable number to model an online attack against a system 
that did not possess a lockout policy. Therefore if an attacker 
could make a guess against each account every 10 seconds, this 
would represent a cracking session of around six days. 

 
Figure 4.2.4: Results of Minimum Password Length on 
Shorter Password Cracking Sessions, Optimized Attack 

What’s striking about the above graph is given just fifty thousand 
guesses; over 25% of the 7+ character long passwords were 
cracked. Even the 10+ character password suffered a crack rate of 
over 14%. Regardless, the session depicted in Fig. 4.2.4 represents 
a much longer cracking session than what the NIST 800-63 model 
would recommend. For a Level 1 certified system with a 
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minimum password length of 10 characters, the maximum number 
of guesses recommended to allow an attacker and still maintain an 
acceptable failure rate is 2048 guesses. To better compare the 
results to the NIST model, Fig 4.2.5 shows the same cracking 
session, but this time limited to 2,000 guesses. 

 
Figure 4.2.5: Results of Minimum Password Length on a Very 

Short Password Cracking Session 

This raises the question, how does the above cracking sessions 
compare to the acceptable NIST failure rates given for level 1 and 
2 certified systems? The answer, based on the above tests can be 
seen in Table 4.2.4. As the results show, if a blacklist of common 
passwords is not part of the password creation policy, the NIST 
model quickly breaks down. For comparison, a policy that meets a 
Level 1 system should only allow an attacker to guess a password 
within the allowed number of guesses with a probability of 1 in 
1024, or approximately a 0.097% chance. Likewise, a Level 2 
certified system should only allow an attacker to be successful 
with a probability of 1 in 16,384, or approximately a 0.0061% 
chance. This is drastically different from our findings. What’s 
worse, the attacker’s success rate actually increases as the number 
of guesses allowed grows due to the higher minimum password 
length, (though it does drop a bit when 10+ characters are 
required). This implies that the current NIST measurements 
overestimate the security provided by increasing the minimum 
password length. 

Table 4.2.4: Targeted Cracking Attack vs. the NIST Entropy 

Value 7+ Chars 8+ Chars 9+ Chars 10+ Chars 

NIST Entropy 16 18 19.5 21 

Level 1 # of 
Guesses 

64 256 724 2048 

% Cracked Using 
Guesses Allowed 
by Level 1 

3.21% 6.04% 7.19% 7.12% 

Acceptable Level1 
Failure  Rate 

0.097% 0.097% 0.097% 0.097% 

Level 2 # of 
Guesses 

4 16 45 128 

% Cracked Using 
Guesses Allowed 
by Level 2 

0.98% 2.19% 2.92% 2.63% 

Acceptable Level2 
Failure  Rate 

0.0061% 0.0061% 0.0061% 0.0061% 

What this shows is that a blacklisting approach must be used for 
any sort of security against online password cracking attacks, 

considering that nearly 1% of 7+ character long passwords were 
cracked with just four guesses. In all fairness, the NIST 800-63 
document does state that a blacklisting approach was required for 
a minimum entropy estimate. That slightly contradicts their 
original entropy calculation though, where they assign an optional 
6 bits of guessing entropy if a blacklist is employed. As we’ll see 
later, even with a blacklisting approach, the NIST model of 
entropy simply does not hold. In fact, no amount of adding or 
modifying values when calculating the NIST Entropy can allow it 
to be effectively applied to model the success rate of a password 
cracking session against human generated passwords. To illustrate 
this, Fig 4.2.6 shows the previous test in Fig 4.2.4, but this time 
also depicting the expected cracking success rate, (using Equation 
#5), per the NIST entropy model for policies requiring at least 
seven character long passwords. Equation #5 simply is a rewriting 
of Equation #3 in a way that can be easily graphed, and takes into 
account that a seven character minimum length password creation 
policy would have a NIST entropy score of 16. 

Chance_of_success(y) = Number_of_guesses(x)/216      5 

Fig 4.2.6 shows conclusively that the NIST notion of entropy does 
not hold when modeling a password cracking session. For 
example, the expected success rate given to Equation #5 means 
100% of the passwords should be cracked given just 65,536 
guesses. This is plainly not the case for any sort of real life attack. 
What’s dangerous about the NIST entropy measurement is that it 
overestimates the security of certain passwords that may be 
cracked quickly by the attacker, leaving the defender with a false 
sense of security, while drastically underestimating the security of 
many passwords that for all intensive purposes are resistant to an 
online attack. This in turn can lead to overly burdensome 
password creation policies that disallow many passwords that in 
practice would be secure against a determined attacker. In short, 
the entropy value doesn’t tell the defender any useful information 
about how secure their password creation policy is. While you can 
change some values in the NIST calculation around, for example 
saying that each additional character gives 1 bit of entropy vs. 2, 
there is simply no way to transform a Shannon entropy value to 
take advantage of Equation #4 and provide the expected success 
rate of a password cracking attack against human generated 
passwords. 

 
Figure 4.2.6: Comparing the NIST Estimated Cracking Speed 

vs. a Real Life Attack. 
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4.3 The Effectiveness of Using Blacklists of 
Banned Passwords 

The next question is how effective are different sized blacklists of 
prohibited passwords. This was simulated by creating blacklists 
based on the training list input dictionary from the previous test. 
For example, a blacklist containing 500 banned passwords would 
be formed from the 500 most frequently used passwords in the 
training set. The results of re-running the attacks depicted in Fig. 
4.2.4 against the RockYou_test1 7+ character long list, and using 
various length blacklists, can be seen in Fig 4.3.1. For this 
cracking session, we also allowed the attacker to have knowledge 
of the blacklist so they will not waste their time making guesses 
included in it. In addition, a limit of 50k guesses was once again 
used to simulate an online cracking session if there was no 
lockout policy. 

 
Figure 4.3.1: Results of Using Blacklists When Attacking 7+ 

Character Long Passwords of the RockYou1 Test List 

The most restrictive password creation policy in this test, where 
passwords must be seven characters long and a blacklist of 50,000 
words is used, yields a NIST calculated entropy value of 22. For a 
Level 1 certified system, that means an attacker would be able to 
make 4096 guesses, and for a Level 2 system the attacker would 
be able to make 256 guesses. To better illustrate this, Fig. 4.3.2 
shows the above password cracking session limited to 4,000 
guesses. 

 
Figure 4.3.2: Results of Using Blacklists When Attacking 7+ 

Character Long Passwords – Shorter Cracking Session 

As the results in Fig 4.3.2 show, given a blacklist of 50k banned 
words, and the 4096 guesses allowed by a level 1 certified system, 
an attacker would still be able to crack 0.848% of the passwords, 
which is still much higher than the 0.097% failure rate that was 

predicted by the NIST model. For a level 2 certified system, an 
attacker would be able to make 256 guesses, and in the above test 
would crack 0.058% of the passwords. This is also significantly 
higher than the NIST predicted 0.0061% failure rate. On the 
positive side, while the results show further flaws in NIST 
approach of calculating password entropy, these tests also 
demonstrate that a significant improvement in the security of a 
system may be obtained with even a moderately sized blacklist. 

4.4 The Effectiveness of Requiring Uppercase 
Characters 

The next password creation policy we are going cover is case 
mangling. Fig. 4.4.1 shows a cracking session against a subset of 
the RockYou_test1 list of all the passwords that contained at least 
one uppercase character, with the attacker using the RockYou 
training input dictionary. The attacker once again has knowledge 
of this password creation policy, and makes use of this when 
generating their guesses. 

 
Figure 4.4.1: Attack when Uppercase is required vs. 

RockYou_test1 

What immediately sticks out is that the password cracking 
sessions start out much like the other attacks, but quickly hit a 
plateau where they become significantly less effective. 
Unfortunately this means that there still are a sizable number of 
users who pick weak passwords and would be compromised in an 
online cracking attack. On the plus side, this seems to imply that 
even a moderately sized blacklist would provide significant 
protection. Looking into the possible causes for this plateau, Table 
4.4.1 shows the top ten case mangling rules for seven character 
long alpha strings that were extracted from passwords with at least 
one uppercase character. These alpha strings were extracted from 
the RockYou_training28-32 sets and are independent of the rest of 
the password (aka Table 4.4.1 only displays the letters, not the 
digits or special characters that may have also been present in the 
password). As Table 4.4.1 shows, an attacker could target around 
89% of the seven character long alpha strings by either trying all 
uppercase letters or just capitalizing the first character. This is not 
inconsequential since in an online attack that would double the 
number of guesses an attacker would have to make, but it is 
hardly ideal. This also means that if an attacker has no additional 
knowledge of the target, they most likely would never try any of 
the other mangling rules in an online attack. That information still 
doesn’t fully explain the results in Fig 4.4.1 though. As a side 
note, the reason a string of all lowercase characters appears in the 
above table is because some of the passwords had an uppercase 
character separated by another value, such as “P#assword”.  
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 Table 4.4.1: Top Ten Case Mangling Rules for 7 characters 

String: U=Upper, L=Lower Probability 

UUUUUUU 53.56% 

ULLLLLL 35.69% 

ULLLULL 1.05% 

LLLLLLL 1.03% 

ULLLLLU 0.90% 

ULLULLL 0.85% 

ULULULU 0.68% 

LLLLLLU 0.62% 

UULLLLL 0.61% 

UUULLLL 0.59% 

To see if people who used uppercase characters created stronger 
passwords in other ways vs. people who didn’t use uppercase 
characters, the RockYou_training28-32 passwords were divided 
by if they contained capital letters or not. The results of a few 
simple metrics comparing the two lists can be seen in Table 4.4.2. 

Table 4.4.2: Comparison of Lowercase vs. Uppercase 

Metric 
No Uppercase 
Characters 

Only Passwords that 
Contained an Uppercase 

Average Length 7.86 characters 8.28 characters 
% that Contained 
a Digit 

53.93 55.74 

% that Contained 
a Special Char 

3.15 7.87 

This shows there is a small but noticeable increase in the use of 
other mangling rules when a password is capitalized. That doesn’t 
mean that everyone who used uppercase letters picked a strong 
password. For example in the RockYou training set input 
dictionary, the top five passwords that contained uppercase 
characters were, “PASSWORD”, “ILOVEYOU”, “PRINCESS”, 
“ABC123”, and “Princess”. This simply implies that the plateau 
may in part be due to a larger proportion of users applying other 
low probability mangling rules or base words. 

4.5 The Effect of Requiring Special Characters 
Now we move on to password creation policies that require 
special characters, (aka not uppercase, lowercase or digits). The 
results of running cracking sessions against the RockYou_test1 
set, where only passwords containing a special character were 
counted, is shown in Figure 4.5.1.  

 
Figure 4.5.1: Attack when a Special Character is Required 

Just like with case mangling, the attack starts out fast, but also 
quickly plateaus. It should be noted that when special characters 
were required, even in the initial first thousand guesses the attack 
was much less successful then with the previous password 
creation rules, such as requiring a digit or capitalized character. 
Beyond the previously mentioned reasons for why these 
passwords may be more resilient to attacks, (such as the users who 
chose special characters creating stronger passwords in general), 
the variation at which people choose special characters almost 
certainly has something to do with their strength as well. 

Table 4.5.1 shows the top 10 single letter, (aka not part of a 
keyboard combo such as “!@#$%”), special characters used. This 
data was collected from the RockYou_training28-32 lists.  

Table 4.5.1: Top Ten One Letter Special Characters 

Special Character Probability 

. 17.81% 

_ 14.72% 

! 11.34% 

- 10.25% 

<space> 8.72% 

@ 7.19% 

* 6.54% 

# 3.92% 

/ 3.01% 

& 1.84% 

This is in stark contrast with digits, where for example 35% of the 
time if a single digit was selected, that digit was the number ‘1’. 
The next step is to see how special characters were used in the 
password itself. Table 4.5.2 shows the top 10 structures of seven 
character passwords from the RockYou_Train32 password list 
that included at least one special character. 

Table 4.5.2: Top Ten Structures for Special Characters 

String: A=Alpha, D=Digit, S=Special Probability 

AAAAAAS 28.50% 

AAASAAA 7.87% 

AAAASDD 6.32% 

AAAAASD 6.18% 

AASAAAA 3.43% 

AAAASAA 2.76% 

AAAAASA 2.64% 

SAAAAAS 2.50% 

ASAAAAA 2.38% 

AAAAASS 2.17% 

As expected, the most common structure simply had a special 
character appended to the end of it. What’s interesting is that it 
was much more frequent for a special character to be followed by 
a digit than the other way around. This may be an indirect result 
of password change policies, where people became used to 
incrementing their base password by one each time they are 
forced to select a new password. Looking at the individual 
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passwords which contained a special character in the middle of 
them, underscores, dashes, and periods were very popular to break 
up two words. For example: “ash_lee”. Letter replacements, such 
as replacing an ‘a’ with an ‘@’, were much less common. 

4.6 Comparing the Attacks against Other 
Password Lists 

Now a legitimate concern with the previous tests is that while the 
training passwords and the test passwords were different, they 
both came from same website. It can be argued that this represents 
an unfair advantage for the attacker, and would not translate to a 
real world password cracking session. To that end, using the same 
dictionary formed from the RockYou training set, password 
cracking sessions were run against several other disclosed 
password lists using a maximum of 50k guesses. For more detail 
about these lists please see Appendix 1 and 2. As in the previous 
tests, these lists were divided by minimum password length. The 
results of these attacks can be seen in Fig. 4.6.1. 

 
Figure 4.6.1: 50k Guesses against Various Password Lists 

As can be seen, the cracking sessions against the RockYou_test1 
dataset actually performed worse than most of the other password 
lists. Much of this is probably due to user training, and the relative 
importance of the passwords to the users. For example, the 
Neopets list for the most part represents young children. On the 
other hand, the PhpBB list was a development and distributions 
site for the PhpBB bulletin board so most of its users were 
webmasters and/or programmers. 

Another point of interest is the effectiveness of the RockYou 
training set dictionary compared with other available input 
dictionaries. To illustrate this, several cracking sessions were run 
against the FaithWriters password list. Since the FaithWriters and 
the Singles.org password lists were both composed of people 
almost exclusively of the Christian faith, another targeted input 
dictionary was created from the Singles.org list. This dictionary 
was generated in the same way as the dictionary from the 
RockYou training list. Since Singles.org represented a much 
smaller password list, it only contained 12,234 unique words. 
Likewise the default dictionary provided with John the Ripper, 
passwords.lst was also used. Due to password.lst’s very small 
size, (3,116 words), the default John the Ripper mangling rules 
were also applied to generate some of the extra guesses required. 
All three input dictionaries were then allowed to make 10 
thousand password guesses against the FaithWriters list. The 
results of this can be seen in Fig. 4.6.2. 

 
Figure 4.6.2: Different Dictionaries vs. the FaithWriters List 

As expected, the Singles.org dictionary performed slightly better 
initially, but it was too small of a sample size to compete with the 
custom RockYou dictionary over a longer password cracking 
session. Both custom dictionaries performed better than the 
default John the Ripper dictionary. This test illustrates that the 
findings depicted in Section 4 can always be improved on as an 
attacker gains more knowledge about their target. It also shows 
the severity of when a password list the size of the RockYou list is 
disclosed in how it can improve online password cracking attacks 
against other sites. 

Now it can certainly be argued, (with good reason), that the 
results found in the previous tests would not hold true if an 
attacker was targeting corporate or bank passwords. One counter-
example to that criticism would be to point out that the popular 
micro-blogging website Twitter was once compromised due to a 
site administrator choosing the password ‘happiness’ [27]. 
Needless to say, administrators and corporate employees are still 
human. That is just one example though, and we freely admit 
more research needs to be done on this subject.  

5. Designing New Password Creation 
Policies 

First let us start by defining several terms. An explicit password 
creation policy is any policy that can lay out the exact rules of 
what constitutes an acceptable password to the user before the 
user creates their password. Examples of this are minimum length 
requirements, character type requirements, etc. An implicit 
password creation policy is any policy that has a reject function 
built into it based on estimated password strength. In addition, this 
reject function may not be fully apparent to the user until they 
create their password and submit it to the system. An example of 
this is a blacklist of “weak” passwords that are not allowed. 
Finally, an external password creation policy is a policy that 
changes a user’s password after it is created in an attempt to add a 
guaranteed amount of randomness. An example of this would be 
adding two random digits to the end of a user’s password. 

Second, it is important to note that the password creation policies 
discussed in this section are done so in regards to an online 
password cracking attack. In an offline password cracking attack, 
it is assumed that an attacker can make hundreds of billions of 
guesses, if not more. This means an offline password cracking 
session is a much harder threat to defend against. As an example 
of that, some of our earlier work cracking the phpbb.com list 
using two desktop computers can be viewed at [11], where we 
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achieved over a 97% success rate during the course of a several 
month cracking session. 

As we’ve discussed in Section 4, while explicit password creation 
policies can frustrate an attacker and reduce their chances of 
success, they still leave a system vulnerable to an online password 
cracking attack due to user behavior. Even more complex rules 
such as requiring passwords to be 14 or even 21 characters long 
may be subverted in some cases by users choosing common 
keyboard combinations, or simply typing the same seven 
character password in two or three times. Another way of looking 
at it is that explicit password creation policies do not provide a 
base level of security by themselves since people tend to follow 
common patterns. 

A very novel and intriguing idea was proposed in [12] to add a 
limited amount of guaranteed security to explicit password 
creation policies by randomly selecting a policy when users create 
their passwords. Rules such as some users would have to include a 
digit in their password; while other users would be forbidden from 
using numbers, would be selected with a random chance. Since 
the attacker would not know which set of rules the user created 
their password under, they would then have to structure their 
attack to target multiple creation policies. One potential problem 
with this, besides user annoyance, is that this approach does not 
stop a user from selecting a weak password under the random 
policy. Since the number of policies is finite, an attacker may still 
be successful by guessing the most common passwords for each 
policy. 

External password creation policies have also been considered by 
several researchers. The advantage is that they provide a set 
baseline of guaranteed randomness that is enforced by the system. 
This guaranteed randomness is imposed by allowing the user to 
select their base password, and then adding values to it that the 
user would then have to remember. In a way this can be thought 
of as a system selected PIN that has to be typed in along with the 
user’s password, though the PIN is incorporated directly into the 
password. The most extreme example of this is a completely 
random password assigned to the user. There has been research to 
make this approach more user friendly, such as assigning the user 
a random passphrase instead of a random password [13]. Other 
approaches have attempted to add randomness after the user 
selects their password by appending or inserting random value to 
it. The user would then have to remember these system defined 
mangling rules as well. Perhaps the best study of this tactic has 
been [14] where researchers attempted to examine user acceptance 
of such a policy. One interesting point that they found was that as 
more intrusive creation policies, (where additional random values 
were inserted into the user’s password), were implemented, users 
started selecting simpler base passwords. It’s hard to fault the 
users for this behavior since there is a limit to what is easily 
memorable.  

The main problem with external password creation policies is that 
they only function effectively if they are applied to a limited 
number of logins. This is due to the fact that the system added 
randomness would change between passwords used at different 
sites. While this may be seen as a plus, as users would not be able 
to re-use the exact same password across multiple accounts, the 
chances of them re-using the same base password remains 
extremely high. In addition, the main coping strategy for 
remembering a large number of passwords that were created 
under external password creation policies would most likely result 
in a majority of users writing their passwords down. While it has 

been argued by several security experts that writing down your 
passwords might not be a negative trend [15], at the very least we 
lose the flexibility and portability that fully human memorable 
passwords provide. 

This leaves us with implicit password creation policies. Besides 
being used on their own, implicit password creation policy can 
also be combined with other password creation policies as well. 
For example a blacklist may be used along with an explicit 
creation rule requiring the user to include at least one uppercase 
letter. Also implicit policies by their very nature may need to be 
retrained to take into account new user behavior caused by the 
policy itself. To illustrate this, if the most common passwords are 
banned, new common passwords may appear. The goal then is to 
find a reject function that forces users to choose passwords 
sufficiently different from each other to deter an online attack. 

As shown in the experiments in the previous section, a blacklist 
policy covering at least 50,000 prohibited passwords seems to 
provide a large degree of security. The biggest issue with a 
blacklist is that by itself it still may not provide enough security 
for high value systems. This was demonstrated in Fig 4.3.2 where 
even though the blacklist provided much more security than any 
of the other explicit policies, it still had a failure rate of 0.84% 
when an attacker was allowed 4096 guesses. 

One potential solution to this problem is to take the grammar we 
described in a previous paper [18] and use it to evaluate the 
probability of user selected passwords. In that paper, we designed 
a password cracking program that was trained on previously 
disclosed passwords. Our current version of this cracking program 
learns information such as the frequency people use certain words, 
case mangling, basic password structure, the probability of digits 
and special characters, etc. and uses that information to construct 
a probabilistic context free grammar that models how people 
select passwords. Our password cracker then proceeds to make 
guesses in probability order according to that grammar. In head to 
head tests with existing password cracking tools, this approach 
proved to be much more successful at cracking passwords. We 
originally designed our cracker for law enforcement to help them 
deal with strong encryption, but we quickly found out that it was 
also useful for the defender to give an estimate on how strong a 
password actually was, or at least how different it was from the 
grammar that the password cracker was trained on. Therefore we 
can parse new passwords, and assign them a probability according 
to a previously trained grammar. An example of parsing a 
password, using a simplified grammar, can be seen in Fig. 5.1. 

 
Figure 5.1 Parsing the Password “password123” 
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Once we have a probability associated with a password we can 
very easily build a reject function that will disallow any password 
whose probability falls above a set threshold. What’s more, since 
our underlying system is built on the idea of context free 
grammars, it becomes simple to select one or more productions 
and randomly suggest a new replacement that would cause the 
probability of the password to fall within acceptable limits. If the 
user does not like any of the suggestions, they are also free to 
select a new password on their own and resubmit it to the system. 
An example of this process is shown in Fig. 5.2. 

 
Figure 5.2: Rejecting a Weak Password and Suggesting a 

Stronger One 

Please note: the probability assigned to a password is not the 
probability of an attacker cracking it, but instead the probability of 
it being produced by our grammar. The probability threshold 
would then be set through a series of benchmarks where the 
remaining passwords productions are unlikely enough that they 
don’t provide an attacker any high probability guesses to make.  

There are several advantages to this approach. Almost certainly 
the most important one is that the probability assigned to the 
different mangling rules is learned from analyzing real user 
behavior. This stands in stark contrast to methods like the NIST 
SP800-63 where they had to decide if uppercasing a letter and 
adding digits was worth 6 bits vs. 8 bits of entropy. Second, our 
method assigns a probability score to an individual password vs. 
an entire password creation policy. This leaves a user free to 
construct the password however they like as long as their 
password meets the acceptable probability threshold. For example 
the user could choose a very long passphrase of all lowercase 
letters, or have a much shorter password that included digits and 
capitalization. Furthermore, by displaying the base probabilities of 
the password, and suggesting new productions, our reject function 
could help educate users as well about what constitutes a strong 
password. In addition, by offering new suggestions or giving the 
user a chance to select an entirely new password, our reject 
function works very similar to how most websites and online 
applications recommend new usernames when the selected one 
has already been taken. This may help drive user acceptance of 
this implicit password creation policy. 

Just like our password cracking program can be retrained to target 
specific individuals, additional modifications can be made to our 
grammar to help resist targeted attacks. For example a special 
dictionary can be designed to match usernames, website names, 
project names, project acronyms, e-mail addresses, etc and give 
them a higher probability then they normally would have. This 

would not stop a user from incorporating them in their password, 
but it would require them to apply additional non-standard 
mangling rules for the password to be accepted. 

This is merely a suggestion though, and much more research, 
(such as actual use case studies), needs to be done before such a 
password creation policy can be considered secure. The main 
point though, and the reason why we put forward this idea, is to 
highlight the fact that there are other approaches that can be taken 
to strengthen the security of user generated passwords besides 
forcing the users to create longer passwords with more character 
requirements. 

6. Conclusion 
Our experiments categorically show that the notion of password 
entropy, as put forward in the NIST SP800-63 document, does not 
provide a valid metric for measuring the security provided by 
password creation policies. This is not to cast dispersions at the 
rest of the SP800-63 document which is otherwise of the highest 
quality. Furthermore, we validated the findings in [7], using 
empirical evidence, that there is no way to convert the notion of 
Shannon entropy into the guessing entropy of password creation 
policies. 

Moving on from that, we then proceeded to evaluate the security 
that common password creation policies, such as minimum 
password length, and character set requirements provide against 
online attacks. Our findings were that absent an external password 
creation policy where the system manually adds randomness to a 
user’s password, or an implicit policy where a reject function 
disallows weak passwords, most common password creation 
policies remains vulnerable to online attack. This is due to a 
subset of the users picking easy to guess passwords that still 
comply with the password creation policy in place, for example 
“Password!1”. Whether such online attacks are feasible or cost 
effective depends on other factors, such as lockout policy, value 
of the target, user training etc. By conducting our experiments 
using real life sets of disclosed passwords though, this provides a 
much greater insight on how people create passwords and the 
vulnerability of those passwords to attack. 

Finally we put forward several other methods for password 
creation policies, including our proposed method to evaluate the 
probability of a human generated password by parsing it with a 
grammar trained on previously disclosed password lists. This 
allows us to build a more robust reject function compared to a 
simple blacklist, while attempting to provide the most user 
freedom possible, given the security constraints of the system, 
when selecting their passwords. 

More work remains to be done on this topic, as there still are 
multiple issues that remain unresolved. For example, how do 
passwords people use on high value targets, such as corporate 
networks or bank accounts, compare with the passwords collected 
from various other websites? It is a mixed blessing that the 
opportunities for this research to be performed in the future are 
only growing as more sites are compromised and more datasets 
become public. It is our hope that this paper will expand the 
discussion on using empirical data collected from non-standard 
sources to evaluate the security that different policies and 
technologies provide us. 
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Appendix 1: Information about the Password Lists 

The RockYou.com List: 

This list was originally obtained by a hacker via a SQL injection against the RockYou.com website [6]. The actual exploit code was first 
disclosed on the darkc0de.com blackhat message board, where multiple hackers took advantage of it. One of them later publicly posted the 
list and it is now widely available. Theoretically the RockYou website has a password creation policy requiring passwords to be between 8 
and 14 characters long and to NOT include any special characters. This may have been implemented after the attack since the actual list 
contains many passwords that do not meet those requirements. The RockYou list also includes multiple passwords for various social 
networking sites such as Facebook, MySpace and Friendster. The list we managed to obtain did not include any usernames or e-mail 
addresses. 

The FaithWriters.com List: 

It is unknown how this site was broken into, but most likely it was due to an SQL injection attack [16]. In the list we obtained, both the e-
mail address and the password were included. The FaithWriters website was primarily composed of Christian writers. It is suspected that 
the attacker who hacked the site was associated with the 4chan.org or Ebaumsworld message boards. The faithwriters website had a 
minimum password length requirement of six characters long, and except for six passwords in the list, all of the passwords complied with 
it. 

The Singles.org List 

The singles.org site was broken into via query string injection, (aka all authentication was done via URLs) [17]. The site advertised itself as 
a dating website for Christian singles. The news of the hack quickly spread to the 4chan.org and ebaumsworld message boards where users 
there quickly exploited the vulnerability to gain access to all of the passwords on singles.org. In many cases, the malicious attackers then 
used those passwords to log into other accounts belonging to the users of singles.org. Since many people choose the same password for all 
of their online accounts, this lead to several serious compromises of Facebook accounts, webmail accounts, Amazon.com accounts, Paypal 
accounts, etc. The password creation policy of the site required all passwords to be eight or less characters long. This list we obtained 
contained e-mail addresses and passwords. 

The Neopets.com List 

It is unknown how this list was originally obtained, but there is a high probability it was done via a phishing attack. Researchers first 
became aware of this list when it was posted publicly on the pastebin.com website. While it is possible that this list is not associated with 
the Neopets site, that is unlikely due to the large number of passwords that correspond to common neopets terminology. Neopets.com is 
website game where users raise electronic pets and battle each other. The game itself is primarily targeted to a younger audience. The 
password list contained e-mail addresses and passwords. 

The PhpBB.com List 

The PhpBB list was originally obtained by a hacker who exploited a flaw in a 3rd party plug-in associated with the phpbb bulletin board 
software [11]. This is ironic since the site itself is the main development website for that bulletin board. The site did not store user 
passwords in plain text. Instead all of the passwords were hashed using either one round of MD5, or using a salted hash, (consisting of 
several thousand rounds of MD5). The reason for these two hashing algorithms was that the site had upgraded their forum software, but 
until a user logged in, they were not converted to the new password hashing scheme. The attacker had attempted to crack a subset of the 
passwords using an online password cracking program, and managed to crack only 24% of the passwords they targeted. The attacker then 
proceeded to publish online all of the password hashes, the passwords they managed to crack, along with a write-up of their attack. Since 
then we have managed to independently crack 97% of all the MD5 hashed passwords from this set using two desktop computers. The 
PhpBB site did not enforce any password creation policy. 

Appendix 2: Statistical Breakdown of the Password Lists 

 RockYou.com* FaithWriters.com Singles.org Neopets.com Phpbb.com** 

Number of Passwords 32,603,388 total 6,193 24,870 11,732 259,424 

Average Password Length 7.88 characters 7.69 characters 6.62 characters 6.68 characters 7.27 characters 

% that Contain Uppercase 5.95 9.43 8.51 2.53 7.21 

% that Contain Digits 54.08 43.54 32.88 57.19 45.77 

% that Contain Special Chars 3.45 0.14 0.20 1.78 1.33 

% that Only Contain 
Lowercase Letters and Digits 

90.76 90.50 91.31 95.61 91.55 

% that are 7+ Chars Long, and 
Contain Uppercase, 
Lowercase, Digits + Special 

0.14 0.03 0 0 0.11 

*The RockYou password statistics are taken from the RockYou32 training list which contained 1 million randomly selected passwords 
**The Phpbb statistics only include the 97% of passwords we managed to crack 
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